¿Que es la ingeniería?

Introducción a la ingeniería en sistemas pdf50   

Ingenieria

plan de estudios Ingenieria Sistemas.pdf  clic para descargar

La ingeniería es un conjunto de conocimientos que al aplicarlos nos conducen a la solución de problemas en la vida diaria.

ALGUNOS CONCEPTOS:

La ingeniería es el conjunto de conocimientos y técnicas científicas aplicadas a la invención, perfeccionamiento y utilización de técnicas para la resolución de problemas que afectan directamente a los seres humanos en su actividad cotidiana.

El ingeniero

Su función principal es la de realizar diseños o desarrollar soluciones tecnológicas a necesidades sociales, industriales o económicas. Para ello el ingeniero debe identificar y comprender los obstáculos más importantes para poder realizar un buen diseño.

INGENIERÍA DE SISTEMAS

Es un conjunto de metodologías para la solución de problemas mediante el análisis, diseño y gestión de sistemas.
Es es conjunto de recursos humanos y materiales a través de los cuales se recolectan, almacenan, procesan y comunican datos e información con el objetivo de lograr una gestión eficiente de las operaciones de una organización.

Aplicación de la ciencia para hacer mas eficiente el uso de las cosas en la vida humana.

Conjunto de conocimientos técnicos, ordenados científicamente, que permiten diseñar y crear bienes y servicios que facilitan la adaptación al medio ambiente y satisfacer tanto las necesidades esenciales como los deseos de las personas.

Técnica

Para la generación de tecnología usamos la ciencia y también la técnica la definiremos como:

procedimiento o conjunto de reglas, normas o protocolos, que tienen como objetivo obtener un resultado determinado, ya sea en el campo de la ciencia, de la tecnología, del arte, del deporte, de la educación o en cualquier otra actividad.

Es por tanto el ordenamiento de la conducta o determinadas formas de actuar y usar herramientas como medio para alcanzar un fin determinado.

A diferencia de la tecnologia(la cual conforma un conjunto de técnicas), la técnica surge tras la necesidad de adaptar el entorno para las necesidades propias.

Arte

En términos generales el arte es una linea entre lo conocido y los desconocido.porque trabajamos con cosas que conocemos y cosas que conocemos para elaborar lo que queremos.

cualquier actividad o producto realizado por el ser humano con una finalidad estética o comunicativa, a través del cual se expresan ideasemociones o, en general, una visión del mundo, mediante diversos recursos, como los plásticoslingüísticossonoros o mixtos.

Conocimiento

Hechos, o datos de información adquiridos por una persona a través de la experiencia o la educación, la comprensión teórica o práctica de un tema u objeto de la realidad.

Evolucion de las computadoras

Generaciones de las Computadoras

VÍDEO  http://youtu.be/hZkdVQtMYD4

Se muestra la evolución de las computadoras, así como de los dispositivos para entrada/salida y los medios de comunicación de datos.

La primer persona en construir una máquina de calcular fue el francés Blaise Pascal (1642). Era una máquina mecánica que sólo servía para sumar.
En 1666 Samuel Morbard crea una máquina para sumar y restar. Ya en 1674, el barón Gottfired Wilhelm von Leibniz construye en Alemania una calculadora mecánica que no solo suma y resta, sino que también puede efectuar operaciones de multiplicación y división. Todas estas calculadoras eran mecánicas, en base a movimientos de engranajes, y los datos se ingresaban por medio de husos giratorios.

 Primera Generación: Válvulas de vacío (1945-1955).

Las computadoras de la primera Generación emplearon bulbos para procesar información. Los operadores ingresaban los datos y programas en códigoespecial por medio de tarjetas perforadas. El almacenamiento interno se lograba con un tambor que giraba rápidamente, sobre el cual un dispositivo delectura/escritura colocaba marcas magnéticas. Esas computadoras de bulbos eran mucho más grandes y generaban más calor que los modeloscontemporáneos.

Eckert y Mauchly contribuyeron al desarrollo de computadoras de la 1era Generación formando una compañía privada y construyendo UNIVAC I, que el Comité del censo utilizó para evaluar el censo de 1950. La IBM tenía el monopolio de los equipos de procesamiento de datos a base de tarjetas perforadas y estaba teniendo un gran auge en productos como rebanadores de carne, básculas para comestibles, relojes y otros artículos; sin embargo no había logrado el contrato para el Censo de 1950.

Para el momento en que Howard Aiken había terminado la Mark II, las computadoras basadas en relés ya eran obsoletas. El principal estímulo para desarrollar computadoras electrónicas estuvo en la segunda guerra mundial. Los submarinos alemanes, que destruían a la flota inglesa, se comunicaban por radio con sus almirantes en Berlín. Los británicos podían captar las señales de radio, pero los mensajes estaban encriptados usando un dispositivo llamado ENIGMA. La inteligencia británica había podido obtener una máquina ENIGMA robada a los alemanes, pero para quebrar los códigos era necesaria una gran cantidad de cálculo, que debía hacerse a alta velocidad.
Para decodificar estos mensajes, el gobierno británico construyó un laboratorio para construir una computadora, llamada COLOSSUS. Alan Turing, T. Flowers y M. Newman construyeron esta computadora (1943), que fue la primer computadora electrónica de la historia. Estaba construida de válvulas de vacío y no tenía dispositivos electromecánicos. A pesar de ello, al ser un secreto militar, su construcción no tuvo ninguna influencia posterior.

En EE.UU., simultáneamente, había interés de la armada para obtener tablas que pudieran usarse para mejorar la precisión en los disparos de artillería pesada (en particular para armas antiaéreas), ya que hacerlos manualmente era tedioso y frecuentemente con errores.

La primera generación de computadoras eran usualmente construidas a mano usando circuitos que contenían relés y tubos de vacío, y a menudo usaron tarjetas perforadas (punched cards) o cinta de papel perforado (punched paper tape) para la entrada de datos [input] y como medio de almacenamiento principal (no volátil). El almacenamiento temporal fue proporcionado por las líneas de retraso acústicas (que usa la propagación de tiempo de sonido en un medio tal como alambre para almacenar datos) o por los tubos de William (que usan la habilidad de un tubo de televisión para guardar y recuperar datos).

A lo largo de 1943, la memoria de núcleo magnético estaba desplazando rápidamente a la mayoría de las otras formas de almacenamiento temporal, y dominó en este campo a mediados de los 70.

En 1936 Konrad Zuse empezó la construcción de la primera serie Z, calculadoras que ofrecen memoria (inicialmente limitada) y programabilidad. Las Zuses puramente mecánicas, pero ya binarias, la Z1 terminada en 1938 nunca funcionó fiablemente debido a los problemas con la precisión de partes. daniela w/h En 1937Leonard Di Shannon hizo su tesis de master en MIT que implementó álgebra booleana usando relés electrónicos e interruptores por primera vez en la historia. Titulada “Un Análisis Simbólico de Circuitos de Relés e Interruptores” (A Symbolic Analysis of Relay and Switching Circuits), la tesis de Shannon, esencialmente, fundó el diseño de circuitos digitales prácticos.

La máquina subsecuente de Zuse, la Z3, fue terminada en 1941. Estaba basada en relés de teléfono y trabajó satisfactoriamente. Así la Z3 fue la primera computadora funcional controlada mediante programas. En muchas de sus características era bastante similar a las máquinas modernas, abriendo numerosos avances, tales como el uso de la aritmética binaria y números de coma flotante. El duro trabajo de reemplazar el sistema decimal (utilizado en el primer diseño de Charles Babbage) por el sistema binario, más simple, significó que las máquinas de Zuse fuesen más fáciles de construir y potencialmente más fiables, dadas las tecnologías disponibles en ese momento.

Esto es a veces visto como la principal razón por la que Zuse tuvo éxito donde Babbage falló; sin embargo, la mayoría de las máquinas de propósito general de ahora continúan teniendo instrucciones de ajustes decimales, la aritmética decimal es aun esencial para aplicaciones comerciales y financieras, y el hardware de coma flotante decimal está siendo agregado en algunas nuevas máquinas (el sistema binario continua siendo usado para direccionamiento en casi todas las máquinas).

Se hicieron programas para las Z3 en películas perforadas [punched films]. Los saltos condicionales eran extraños, pero desde los 1990s los puristas teóricos decían que la Z3 era aún una computadora universal (ignorando sus limitaciones de tamaño de almacenamiento físicas). En dos patentes de 1937Konrad Zuse también anticipó que las instrucciones de máquina podían ser almacenadas en el mismo tipo de almacenamiento utilizado por los datos – la clave de la visión que fue conocida como la arquitectura de von Neumann y fue la primera implementada en el diseño Británico EDSAC (1949) más tarde.

Zuse también diseño el primer lenguaje de programación de alto nivel “Plankalkül” en 1945, aunque nunca se publicó formalmente hasta 1981, y fue implementado la primera vez en el 2000 por la Universidad de Berlín, cinco años después de la muerte de Zuse.

Zuse sufrió retrocesos dramáticos y perdió muchos años durante la Segunda Guerra Mundial cuando los bombarderos británicos o estadounidenses destruyeron sus primeras máquinas. Al parecer su trabajo permaneció largamente desconocido para los ingenieros del Reino Unido y de los Estados Unidos hasta IBM era consciente de esto y financió su compañía a inicios de la post-guerra en 1946, para obtener derechos sobre las patentes de Zuse.

En 1840, fue completada la Calculadora de Número Complejo, una calculadora para aritmética compleja basada en relés. Fue la primera máquina que siempre se usó remotamente encima de una línea telefónica. En 1938, John Vincent Atanasoff y Clifford E. Berry de la Universidad del Estado de Iowa desarrollaron la Atanasoff Berry Computer (ABC) una computadora de propósito especial para resolver sistemas de ecuaciones lineales, y que emplearon condensadores montados mecánicamente en un tambor rotatorio para memoria. La máquina ABC no era programable, aunque se considera una computadora en el sentido moderno en varios otros aspectos.

Durante la Segunda Guerra Mundial, los británicos hicieron esfuerzos significativos en Bletchley Park para descifrar las comunicaciones militares alemanas. El sistema cypher alemán (Enigma), fue atacado con la ayuda con las finalidad de construir bombas (diseñadas después de las bombas electromecánicas programables) que ayudaron a encontrar posibles llaves Enigmas después de otras técnicas tenían estrechadas bajo las posibilidades. Los alemanes también desarrollaron una serie de sistemas cypher (llamadas Fish cyphers por los británicos y Lorenz cypers por los alemanes) que eran bastante diferentes del Enigma. Como parte de un ataque contra estos, el profesor Max Newman y sus colegas (incluyendo Alan Turing) construyeron el Colossus. El Mk I Colossus fue construido en un plazo muy breve por Tommy Flowers en la Post Office Research Station en Dollis Hill en Londres y enviada a Bletchley Park.

El Colossus fue el primer dispositivo de cómputo totalmente electrónico. El Colossus usó solo tubos de vacío y no tenía relees. Tenía entrada para cinta de papel [paper-tape] y fue capaz de hacer bifurcaciones condicionales. Se construyeron nueve Mk II Colossi (la Mk I se convirtió a una Mk II haciendo diez máquinas en total). Los detalles de su existencia, diseño, y uso se mantuvieron en secreto hasta los años 1970. Se dice que Winston Churchill había emitido personalmente una orden para su destrucción en pedazos no más grandes que la mano de un hombre. Debido a este secreto el Colossi no se ha incluido en muchas historias de la computación. Una copia reconstruida de una de las máquinas Colossus esta ahora expuesta en Bletchley Park.

El trabajo de preguerra de Turing ejerció una gran influencia en la ciencia de la computación teórica, y después de la guerra, diseñó, construyó y programó algunas de las primeras computadoras en el Laboratorio Nacional de Física y en la Universidad de Mánchester. Su trabajo de 1936 incluyó una reformulación de los resultados de Kurt Gödel en 1931 así como una descripción de la que ahora es conocida como la máquina de Turing, un dispositivo puramente teórico para formalizar la noción de la ejecución de algoritmos, reemplaza al lenguaje universal, más embarazoso, de Gödel basado en aritmética. Las computadoras modernas son Turing-integrada (capacidad de ejecución de algoritmo equivalente a una máquina Turing universal), salvo su memoria finita. Este limitado tipo de Turing-integrados es a veces visto como una capacidad umbral separando las computadoras de propósito general de sus predecesores de propósito especial.

George Stibitz y sus colegas en Bell Labs de la ciudad de Nueva York produjeron algunas computadoras basadas en relee a finales de los años 1930 y a principios de los años 1940, pero se preocuparon más de los problemas de control del sistema de teléfono, no en computación. Sus esfuerzos, sin embargo, fueron un claro antecedente para otra máquina electromecánica americana.

La Harvard Mark I (oficialmente llamada Automatic Sequence Controlled Calculator) fue una computadora electro-mecánica de propósito general construida con financiación IBM y con asistencia de algún personal de IBM bajo la dirección del matemático Howard Aiken de Harvard. Su diseño fue influenciado por la Máquina Analítica. Fue una máquina decimal que utilizó ruedas de almacenamiento e interruptores rotatorios además de los relees electromagnéticos.

Se programaba mediante cinta de papel perforado, y contenía varias calculadoras trabajando en paralelo. Más adelante los modelos contedrían varios lectores de cintas de papel y la máquina podía cambiar entre lectores basados en una condición. No obstante, esto no hace mucho la máquina Turing-integrada. El desarrollo empezó en 1939 en los laboratorio de Endicott de IBM; la Mark I se llevó a la Universidad de Harvard para comenzar a funcionar en mayo de 1944.

Segunda Generación: Transistores (1955-1965).

Transistor Compatibilidad Limitada

El invento del transistor hizo posible una nueva Generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.

Los programas de computadoras también mejoraron. El COBOL (COmmon Busines Oriented Languaje) desarrollado durante la 1era generación estaba ya disponible comercialmente, este representa uno de os mas grandes avances en cuanto a portabilidad de programas entre diferentes computadoras; es decir, es uno de los primeros programas que se pueden ejecutar en diversos equipos de computo después de un sencillo procesamiento de compilación. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. Grace Murria Hooper (1906-1992), quien en 1952 habia inventado el primer compilador fue una de las principales figuras de CODASYL (Comité on Data SYstems Languages), que se encago de desarrollar el proyecto COBOL El escribir un programa ya no requería entender plenamente el hardware de la computación. Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en lossistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventariosnómina y contabilidad.

 La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH.

Algunas de las computadoras que se construyeron ya con transistores fueron la IBM 1401, las Honeywell 800 y su serie 5000, UNIVAC M460, las IBM 7090 y 7094, NCR 315, las RCA 501 y 601, Control Data Corporation con su conocido modelo CDC16O4, y muchas otras, que constituían un mercado de gran competencia, en rápido crecimiento. En esta generación se construyen las supercomputadoras Remington Rand UNIVAC LARC, e IBM Stretch (1961).

La primer computadora puramente basada en transistores fue la TX-0 (Transitorized eXperimental computer 0), en el MIT. Esta fue un dispositivo usado para probar la TX-2. Uno de los ingenieros trabajando en este laboratorio, Kenneth Olsen, abandonó el laboratorio para formar la compañía DEC (Digital Equipment Company).
En 1956, IBM introduce el primer disco duro. En el mismo año, se diseña la primer computadora comercial UNIVAC puramente basada en transistores.
En 1957 la EDSAC 2 estuvo operativa. Era una computadora con 1024 palabras de 40 bits, con dos órdenes por palabras. Estaba hecha con válvulas, y la memoria usaba núcleos de ferrita. La ALU era bit-sliced. Se incluyeron operaciones de punto flotante para hacer los cálculos más simples, que usaba una fracción de 32 bits y un exponente de 8 bits. La computadora era microprogramada, con una ROM 768 palabras. La ROM permitía que diversas subrutinas útiles (seno, coseno, logaritmos, exponenciales) estuvieran siempre disponibles. La memoria fija incluía un ensamblador y un conjunto de subrutinas de impresión que permitían hacer entrada/salida.


TERCERA GENERACIÓN: circuitos integrados (1965-1980)

Circuitos Integrados, Compatibilidad con Equipo Mayor, Multiprogramación, Minicomputadora.

Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.

El descubrimiento en 1958 del primer Circuito Integrado (Chip) por el ingeniero Jack S. Kilby (nacido en 1928) de Texas Instruments, así como los trabajos que realizaba, por su parte, el Dr. Robert Noyce de Fairchild Semicon ductors, acerca de los circuitos integrados, dieron origen a la tercera generación de computadoras.

Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicacionesmatemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos.

La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos.

IBM marca el inicio de esta generación, cuando el 7 de abril de 1964 presenta la impresionante IBM 360, con su tecnología SLT (Solid Logic Technology). Esta máquina causó tal impacto en el mundo de la computación que se fabricaron más de

30000, al grado que IBM llegó a conocerse como sinónimo de computación.

También en ese año, Control Data Corporation presenta la supercomputadora CDC 6600, que se consideró como la más poderosa de las computadoras de la época, ya que tenía la capacidad de ejecutar unos 3 000 000 de instrucciones por segundo (mips).

Se empiezan a utilizar los medios magnéticos de almacenamiento, como cintas magnéticas de 9 canales, enormes discos rígidos, etc. Algunos sistemas todavía usan las tarjetas perforadas para la entrada de datos, pero las lectoras de tarjetas ya alcanzan velocidades respetables.

Los clientes podían escalar sus sistemas 360 a modelos IBM de mayor tamaño y podían todavía correr sus programas actuales. Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).

Por ejemplo la computadora podía estar calculando la nomina y aceptando pedidos al mismo tiempo. Minicomputadoras, Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation DEC redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las minicomputadoras se desarrollaron durante la segunda generación pero alcanzaron sumador auge entre 1960 y 70.

Como fue mencionado, a fines de los años ’50, ingenieros en Fairchild Semiconductor Co. y en Texas Instrument desarrollaron el primer transistor plano, y mas adelante el primer circuito integrado plano. La invención del circuito integrado reveló el potencial para extender el costo y los beneficios de operación de los transistores a todos los circuitos producidos en masa. La invención del circuito integrado permitió que docenas de transistores se pusieran en el mismo chip. Este empaquetamiento permitió construir computadoras más pequeñas, rápidas y baratas que sus predecesores con transistores. Las primeras versiones de la IBM 360 eran transistorizadas, pero las versiones posteriores no solo eran más rápidas y poderosas, sino que fueron construidas en base a circuitos integrados.
En 1965, Gordon E. Moore (fundador de Fairchild, y patentador del primer circuito integrado) cuantificó el crecimiento sorprendente de las nuevas tecnologías de semiconductores. Dijo que los fabricantes habían duplicado la densidad de los componentes por circuito integrado a intervalos regulares (un año), y que seguirían haciéndolo mientras el ojo humano pudiera ver.
En 1967, Fairchild introduce un chip que contenía una ALU de 8 bits: el 3800. En 1968, Gordon Moore, Robert Noyce y Andy Grove establecen la compañía Intel, que en un principio se dedica a fabricar chips de memoria. En este mismo año, la computadora CDC 7600 logra la velocidad de 40 Mflops..


  Como fue mencionado, a fines de los años ’50, ingenieros en Fairchild Semiconductor Co. y en Texas Instrument desarrollaron el primer transistor plano, y mas adelante el primer circuito integrado plano. La invención del circuito integrado reveló el potencial para extender el costo y los beneficios de operación de los transistores a todos los circuitos producidos en masa. La invención del circuito integrado permitió que docenas de transistores se pusieran en el mismo chip. Este empaquetamiento permitió construir computadoras más pequeñas, rápidas y baratas que sus predecesores con transistores. Las primeras versiones de la IBM 360 eran transistorizadas, pero las versiones posteriores no solo eran más rápidas y poderosas, sino que fueron construidas en base a circuitos integrados.
En 1965, Gordon E. Moore (fundador de Fairchild, y patentador del primer circuito integrado) cuantificó el crecimiento sorprendente de las nuevas tecnologías de semiconductores. Dijo que los fabricantes habían duplicado la densidad de los componentes por circuito integrado a intervalos regulares (un año), y que seguirían haciéndolo mientras el ojo humano pudiera ver.
En 1967, Fairchild introduce un chip que contenía una ALU de 8 bits: el 3800. En 1968, Gordon Moore, Robert Noyce y Andy Grove establecen la compañía Intel, que en un principio se dedica a fabricar chips de memoria. En este mismo año, la computadora CDC 7600 logra la velocidad de 40 Mflops..

CUARTA GENERACIÓN (1971 a 1981)

Computadoras personales y VLSI (1980 – ).
En la década del ’80, fue posible la Integración a Muy Alta Escala (VLSI – Very Large Sacel Integration) poniendo cientos de miles (y posteriormente millones) de transistores en un chip.

Microprocesador , Chips de memoria, Microminiaturización

Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de Muchos más componentes en un Chip: producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador y de chips hizo posible la creación de las computadoras personales (PC)

En 1971, intel Corporation, que era una pequeña compañía fabricante de semiconductores ubicada en Silicon Valley, presenta el primer microprocesador o Chip de 4 bits, que en un espacio de aproximadamente 4 x 5 mm contenía 2 250 transistores. Este primer microprocesador que se muestra en la figura 1.14, fue bautizado como el 4004.

Silicon Valley (Valle del Silicio) era una región agrícola al sur de la bahía de San Francisco, que por su granproducción de silicio, a partir de 1960 se convierte en una zona totalmente industrializada donde se asienta una gran cantidad de empresas fabricantes de semiconductores y microprocesadores. Actualmente es conocida en todo el mundo como la región más importante para las industrias relativas a la computación: creación de programas y fabricación de componentes.

Actualmente ha surgido una enorme cantidad de fabricantes de microcomputadoras o computadoras personales, que utilizando diferentes estructuraso arquitecturas se pelean literalmente por el mercado de la computación, el cual ha llegado a crecer tanto que es uno de los más grandes a nivel mundial; sobre todo, a partir de 1990, cuando se logran sorprendentes avances en Internet.

Esta generación de computadoras se caracterizó por grandes avances tecnológicos realizados en un tiempo muy corto. En 1977 aparecen las primeras microcomputadoras, entre las cuales, las más famosas fueron las fabricadas por Apple Computer, Radio Shack y Commodore Busíness Machines. IBM se integra al mercado de las microcomputadoras con su Personal Computer (figura 1.15), de donde les ha quedado como sinónimo el nombre de PC, y lo más importante; se incluye un sistema operativo estandarizado, el MS- DOS (MicroSoft Disk Operating System).

Las principales tecnologías que dominan este mercado son:

IBM y sus compatibles llamadas clones, fabricadas por infinidad de compañías con base en los procesadores 8088, 8086, 80286, 80386, 80486, 80586 o Pentium, Pentium II, Pentium III y Celeron de Intel y en segundo término Apple Computer, con sus Macintosh y las Power Macintosh, que tienen gran capacidad de generación de gráficos y sonidos gracias a sus poderosos procesadores Motorola serie 68000 y PowerPC, respectivamente. Este último microprocesador ha sido fabricado utilizando la tecnología RISC (Reduced Instruc tion Set Computing), por Apple Computer Inc., Motorola Inc. e IBM Corporation, conjuntamente.

Los sistemas operativos han alcanzado un notable desarrollo, sobre todo por la posibilidad de generar gráficos a gran des velocidades, lo cual permite utilizar las interfaces gráficas de usuario (Graphic User Interface, GUI), que son pantallas con ventanas, iconos (figuras) y menús desplegables que facilitan las tareas de comunicación entre el usuario y la computadora, tales como la selección de comandos del sistema operativo para realizaroperaciones de copiado o formato con una simple pulsación de cualquier botón del ratón (mouse) sobre uno de los iconos o menús.

QUINTA GENERACIÓN Y LA INTELIGENCIA ARTIFICIAL 

Cada vez se hace más difícil la identificación de las generaciones de computadoras, porque los grandes avances y nuevos descubrimientos ya no nos sorprenden como sucedió a mediados del siglo XX. Hay quienes consideran que la cuarta y quinta generación han terminado, y las ubican entre los años 1971-1984 la cuarta, y entre 1984-1990 la quinta. Ellos consideran que la sexta generación está en desarrollo desde 1990 hasta la fecha.

Siguiendo la pista a los acontecimientos tecnológicos en materia de computación e informática, podemos puntualizar algunas fechas y características de lo que podría ser la quinta generación de computadoras.

Con base en los grandes acontecimientos tecnológicos en materia de microelectrónica y computación (software) como CADI CAM, CAE, CASE, inteligencia artificial, sistemas expertos, redes neuronales, teoría del caos, algoritmos genéticos, fibras ópticas, telecomunicaciones, etc., a de la década de los años ochenta se establecieron las bases de lo que se puede conocer como quinta generación de computadoras.

Hay que mencionar dos grandes avances tecnológicos, que sirvan como parámetro para el inicio de dicha generación: la creación en 1982 de la primera supercomputadora con capacidad de proceso paralelo, diseñada por Seymouy Cray, quien ya experimentaba desde 1968 con supercomputadoras, y que funda en 1976 la Cray Research Inc.; y el anuncio por parte del gobierno japonés del proyecto “quinta generación”, que según se estableció en el acuerdo con seis de las más grandes empresas japonesas de computación, debería terminar en 1992.

El proceso paralelo es aquél que se lleva a cabo en computadoras que tienen la capacidad de trabajar simultáneamente con varios microprocesadores. Aunque en teoría el trabajo con varios microprocesadores debería ser mucho más rápido, es necesario llevar a cabo una programación especial que permita asignar diferentes tareas de un mismo proceso a los diversos microprocesadores que intervienen.

También se debe adecuar la memoria para que pueda atender los requerimientos de los procesadores al mismo tiempo. Para solucionar este problema se tuvieron que diseñar módulos de memoria compartida capaces de asignar áreas de caché para cada procesador.

Según este proyecto, al que se sumaron los países tecnológicamente más avanzados para no quedar atrás de Japón, la característica principal sería la aplicación de la inteligencia artificial (Al, Artificial Intelligence). Las computadoras de esta generación contienen una gran cantidad de microprocesadores trabajando en paralelo y pueden reconocer voz e imágenes. También tienen la capacidad de comunicarse con un lenguaje natural eirán adquiriendo la habilidad para tomar decisiones con base en procesos de aprendizaje fundamentados en sistemas expertos e inteligencia artificial.

El almacenamiento de información se realiza en dispositivos magneto ópticos con capacidades de decenas de Gigabytes; se establece el DVD (Digital Video Disk o Digital Versatile Disk) como estándar para el almacenamiento de video y sonido; la capacidad de almacenamiento de datos crece de manera exponencial posibilitando guardar más información en una de estas unidades, que toda la que había en la Biblioteca de Alejandría. Los componentes de los microprocesadores actuales utilizan tecnologías de alta y ultra integración, denominadas VLSI (Very Large Sca/e Integration) y ULSI (Ultra Lar- ge Scale Integration).

Sin embargo, independientemente de estos “milagros” de la tecnología moderna, no se distingue la brecha donde finaliza la quinta y comienza la sexta generación. Personalmente, no hemos visto la realización cabal de lo expuesto en el proyecto japonés debido al fracaso, quizás momentáneo, de la inteligencia artificial.

El único pronóstico que se ha venido realizando sin interrupciones en el transcurso de esta generación, es la conectividad entre computadoras, que a partir de 1994, con el advenimiento de la red Internet y del World Wide Web, ha adquirido una importancia vital en las grandes, medianas y pequeñas empresas y, entre los usuarios particulares de computadoras.

El propósito de la Inteligencia Artificial es equipar a las Computadoras con “Inteligencia Humana” y con la capacidad de razonar para encontrar soluciones.  Otro factor fundamental del diseño, la capacidad de la Computadora para reconocer patrones y secuencias de procesamiento que haya encontrado previamente, (programación Heurística) que permita a la Computadora recordar resultados previos e incluirlos en el procesamiento, en esencia, la Computadora aprenderá a partir de sus propias experiencias usará sus Datos originales para obtener la respuesta por medio del razonamiento y conservará esos resultados para posteriores tareas de procesamiento y toma de decisiones.

SEXTA GENERACIÓN 1990 HASTA LA FECHA

Como supuestamente la sexta generación de computadoras está en marcha desde principios de los años noventas, debemos por lo menos, esbozar las características que deben tener las computadoras de esta generación. También se mencionan algunos de los avances tecnológicos de la última década del siglo XX y lo que se espera lograr en el siglo XXI. Las computadoras de esta generación cuentan con arquitecturas combinadas Paralelo / Vectorial, con cientos de microprocesadores vectoriales trabajando al mismo tiempo; se han creado computadoras capaces de realizar más de un millón de millones de operaciones aritméticas de punto flotante por segundo (teraflops); las redes de área mundial (Wide Area Network, WAN) seguirán creciendo desorbitadamente utilizando medios de comunicación a través de fibras ópticas y satélites, con anchos de banda impresionantes. Las tecnologías de esta generación ya han sido desarrolla das o están en ese proceso. Algunas de ellas son: inteligencia / artificial distribuida; teoría del caos, sistemas difusos, holografía, transistores ópticos, etcétera.

Partes de un sistema de computo

El gabinete

gabinete de computadora

El gabinete es una caja metálica y de plástico, horizontal o vertical (en este último caso, también es llamado torre o tower), en el que se encuentran todos los componentes de la computadora (placas, disco duro, procesador, etc ).El gabinete posee una unidad de fuente eléctrica, que convierte la corriente eléctrica alterna en corriente continua para alimentar todos los componentes.Así, la fuente de alimentación eléctrica debe tener una potencia adecuada para la cantidad de periféricos que se pretende instalar en el equipo. Mientras más componentes se desee instalar más potencia será necesaria.Dentro del gabinete son instaladas las placas, que son grupos de circuitos electrónicos que sirven para comandar la computadora y sus periféricos. Las principales placas ya vienen instaladas cuando se compra la computadora, pero otras pueden ser instaladas, para mejorar la performance, tales como una placa aceleradora de vídeo o una placa de sonidoDentro del gabinete son colocados:Fuente
Mainboard (Placa madre)
Procesador
Placa de Vídeo
Placa de Sonido
Placa de Red
Drives internos (Drive de CD, Drive de DVD, Lectores de Memoria)
Memoria
Disco duro (HD)

Los gabinetes pueden ser comprados con o sin fuente.

A muchos les gusta hacer alteraciones en el gabinete, lo que es conocido como Case Modding.

Estas son las elecciones posibles:

  1. Desktop (Sobremesa horizontal) , es lo ideal, si el computador va a ser utilizado en una oficina, encima de una mesa, por ocupar menos espacio, pero si la oficina está racionalizada y las mesas de trabajo bien adaptadas, uno de los errores que la gente comete a menudo es pensar que las cajas sobremesa tienen menos posibilidades de ampliación, en general tiene los mismos slots ISA y PCI, pero sí que tiene menos bahías para unidades de CD-ROM y unidades de Backup (normalemente suelen tener tres) y menos espacio interno para discos duros internos adicionales, pero en oficina el computador no es tan propenso a la ampliación como al cambio de todo el equipo, esto no suele ser un problema.
  2. Mini Tower (Mini torre vertical) es una caja colocada en forma vertical, uno de los problemas con esta es su poco espacio especialmente en formato ATX, por cuestiones de refrigeración del procesador, pues en muchos casos en la caja minitorre el chasis o la propia fuente de alimentación tapaba el procesador o incluso chocaba con él.
  3. Medium Tower (Torre mediana vertical) es la elección más acertada en la mayoría de los casos, con un tamaño ajustado y con suficientes posibilidades de expansión externa e interna. Sólo los aficionados a expandir los equipos y poseer muchos componentes internos (tarjetas, discos duros, etc.) instalados temerán, y con razón, un sobrecalentamiento. Además la potencia de la fuente de alimentación de estas cajas no está pensada para muchos componentes pero se puede cambiar.
  4. Full Tower (Torre grande vertical) están pensadas para servidores o estaciones gráficas en los que vamos a instalar gran cantidad de dispositivos, o para usuarios que se ven obligados a poner el computador en el suelo por falta de espacio (una caja más pequeña les obligaría a agacharse para insertar un disquete o un CD-ROM), o para usuarios que van a instalar gran cantidad de componentes y tienen miedo a que no circule bien el aire o a amantes del overclocking que desean espacio para que el aire circule y enfríe el procesador. Sin embargo, un gran tamaño no implica mejor refrigeración, a menos que la caja esté abierta.

Espacio

Hablando de espacio EXTERNO. Si vamos a colocar nuestra caja encastrada en un mueble o una mesa, atención: la parte posterior del mueble o mesa debe de estar abierta, y si el mueble o mesa está pegada a una pared, debemos dejar al menos 25cm de espacio libre, y además unos 10cm por cada lado, para que se pueda evacuar el aire. En su defecto (el mueble ya está hecho y no pensamos en ello al encargarlo) debemos colocar un ventilador en la parte frontal del equipo (si la caja tiene ranuras delanteras de salida de aire; hacérselas puede ser una chapuza y será mejor comprar otra caja) para que extraiga el aire interior.

Hablando de espacio INTERIOR, una caja de mayor tamaño no implica más espacio para trabajar cómodamente, más espacio para componentes, o mayor refrigeración.

Accesibilidad

Hay que fijarse bien en la colocación de la fuente de alimentación y el soporte de los discos duros incluso en una caja grande. En una caja pequeña, podemos necesitar hacer malabarismos para ampliar la memoria o conectar un cable al canal IDE secundario. Un detalle que se puede observar muchas veces es que por la construcción de la caja es imposible quitar los tornillos del lado derecho del disco duro e incluso cajas en las que el panel del lado derecho de la caja no se puede quitar.

Una caja en la que se puedan quitar independientemente los paneles izquierdo y derecho es muy cómoda cuando abrimos el computador con frecuencia, e incluso para los amantes del overclocking que prefieren quitar el panel izquierdo para así no tener problemas de refrigeración, y además aporta rigidez a la caja.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

2. Fuente de Alimentación

Por supuesto una fuente AT para una placa AT y una fuente ATX para una placa ATX, aunque hay que tener en cuenta que muchas placas AT modernas tienen un conector adicional para fuente ATX, la caja debe traer distintas tapas para los conectores, entre ellas una para conectores de placa AT. Muchas personas identifican la fuente AT porque poseen dos conectores que van a la placa base y la ATX porque solo poseen un conector y el apagado de la placa base es automático

3. MAIN BOARD, MOTHER BOARD, BOARD O TARJETA PRINCIPAL

La Tarjeta Madre, también conocida como Tarjeta Principal, Mainboard, Motherboard, etc. es el principal y esencial componente de toda computadora, ya que allí donde se conectan los demás componentes y dispositivos del computador.

La Tarjeta Madre contiene los componentes fundamentales de un sistema de computación. Esta placa contiene el microprocesador o chip, la memoria principal, la circuitería y el controlador y conector de bus.

Además, se alojan los conectores de tarjetas de expansión (zócalos de expansión), que pueden ser de diversos tipos, como ISA, PCI, SCSI y AGP, entre otros. En ellos se pueden insertar tarjetas de expansión, como las de red, vídeo, audio u otras.

Aunque no se les considere explícitamente elementos esenciales de una placa base, también es bastante habitual que en ella se alojen componentes adicionales como chips y conectores para entrada y salida de vídeo y de sonido, conectores USB, puertos COM, LPT y conectores PS/2 para ratón y teclado, entre los más importantes.

Físicamente, se trata de una placa de material sintético, sobre la cual existe un circuito electrónico que conecta diversos componentes que se encuentran insertados o montados sobre la misma, los principales son:

  • Microprocesador o Procesador: (CPU – Unidad de Procesamiento Central) el cerebro del computador montado sobre una pieza llamada zócalo o slot
  • Memoria principal temporal: (RAM – Memoria de acceso aleatorio) montados sobre las ranuras de memoria llamados generalmente bancos de memoria.
  • Las ranuras de expansión: o slots donde se conectan las demás tarjetas que utilizará el computador como por ejemplo la tarjeta de video, sonido, modem, red, etc.
  • Chips: como puede ser la BIOS, los Chipsets o contralodores.

Ejemplo de una tarjeta Madre o Principal:

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Tipos de Tarjetas

Las tarjetas madres o principales existen en varias formas y con diversos conectores para dispositivos, periféricos, etc. Los tipos más comunes de tarjetas son:

ATX

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Son las más comunes y difundidas en el mercado, se puede decir que se están convirtiendo en un estándar y pueden llegar a ser las únicas en el mercado informático. Sus principales diferencias con las AT son las de mas fácil ventilación y menos enredo de cables, debido a la colocación de los conectores ya que el microprocesador suele colocarse cerca del ventilador de la fuente de alimentación y los conectores para discos cerca de los extremos de la placa. Además, reciben la electricidad mediante un conector formado por una sola pieza.

AT ó Baby-AT

Baby AT: Fue el estándar durante años , formato reducido del AT, y es incluso más habitual que el AT por adaptarse con mayor facilidad a cualquier caja, pero los componentes están más juntos, lo que hace que algunas veces las tarjetas de expansión largas tengan problemas. Poseían un conector eléctrico dividido en dos piezas a diferencias de las ATX que esta formado por una sola pieza mencionado anteriormente.

Conector de board AT

Diseños propietarios

Pese a la existencia de estos típicos y estándares modelos, los grandes fabricantes de ordenadores como IBM, Compaq, Dell, Hewlett-Packard, Sun Microsystems, etc. Sacan al mercado placas de tamaños y formas diferentes, ya sea por originalidad o simplemente porque los diseños existentes no se adaptan as sus necesidades. De cualquier modo, hasta los grandes de la informática usan cada vez menos estas particulares placas, sobre todo desde la llegada de las placas ATX.

El microprocesador: (CPU) (siglas de C entral P rocessing U nit).

También llamada procesador, es el chip o el conjunto de chips que ejecuta instrucciones en datos, mandados por el software. La CPU o cerebro del PC se inserta en la placa base en un zócalo especial del que hablaremos más adelante.

Dependiendo de la marca y del modelo del procesador se debe adquirir la board para que sean compatibles. Cualquier placa base moderna soporta los procesadores de INTEL, pero no todas soportan el Pentium 233 MMX o el Pentium II 450. Otra cuestión muy diferente es el soporte de los procesadores de AMD o CYRIX, especialmente en sus últimas versiones (K6-2 de AMD, MII de Cyrix/IBM), es decir diferentes compañías desarrollan su propio zócalo para conectar su CPU.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Tipos de zócalo o socket:

PGA: Es un conector cuadrado, la cual tiene orificios muy pequeños en donde encajan los pines cuando se coloca el microprocesador a presión.

ZIF: (Zero Insertion Force – Cero fuerza de inserción) Eléctricamente es como un PGA, la diferencia es que posee un sistema mecánico que permite introducir el chip sin necesidad de presión alguna, eliminando la posibilidad de dañarlo, tanto al introducirlo como extraerlo.

Surgió en la época del 486 y sus distintas versiones (Socket’s 3, 5 y 7, principalmente) se han utilizado hasta que apareció el Pentium II. Actualmente se fabrican tres tipos de zócalos ZIF:

Socket 7:variante del Socket 7 que se caracteriza por poder usar velocidades de bus de hasta 100 MHz, que es el que utilizan los chips AMD K6-2.

Socket 370 ó PGA 370:físicamente similar al anterior, pero incompatible con él por utilizar un bus distinto.

Socket A: utilizado únicamente por algunos AMD K7 Athlon y por los AMD Duron.

Slot 1: Es un nuevo medio de montaje para chips. Físicamente muy distinto al anterior. Es una ranura muy similar a un conector PCI o ISA que tiene los contactos o conectores en forma de peine.

Slot A: La versión de AMD contra el Slot 1; físicamente ambos “slots” son iguales, pero son incompatibles ya que Intel no tubo ninguna intención de vender la idea y es utilizado únicamente por el AMD K7 Athlon.

Cabe anotar que las marcas más consolidadas en el mercado son Intel y AMD, siendo ambos fuertes competidores entre si. Intel maneja principalmente dos modelos de procesadores: Pentium y Celeron, siendo el uno más costoso que el otro (Esto se debe a la diferencia de cantidad de memoria caché que tienen). Al igual AMD maneja dos tipos o modelos de procesadores: Athlon y Duron. Al igual que Intel manejan una diferencia de precios entre los dos, es decir ambas compañías ofrecen un modelo costoso y otro de menor valor, esto previendo satisfacer el mercado adquisitivo. La calidad de ambas marcas y de cualquier modelo es muy buena, no se deben demeritar ninguno. Actualmente se viene presentando un aval de Microsoft para su sistema operativo Windows XP con las nuevas versiones de Athlon de AMD. La tabla enseña los procesadores AMD e Intel en ambas versiones.

AMD Intel
Versión Costosa Athlon Pentium
Versión económica Duron Celeron

Otros: En ocasiones, no existe zócalo en absoluto, sino que el chip está soldado a la placa, en cuyo caso a veces resulta hasta difícil de reconocer. Es el caso de muchos 8086, 286 y 386SX ó bien se trata de chips antiguos como los 8086 ó 286, que tienen forma rectangular alargada parecida al del chip de la BIOS y pines ó patitas planas en vez de redondas, en este caso, el zócalo es asimismo rectangular, del modelo que se usa para multitud de chips electrónicos de todo tipo. Actualmente sé esta utilizando el Soket A similar al Zócalo 370 pero de menor tamaño es utilizado por los Pentium IV.

Enfriamiento

Los microprocesadores almacenan grande cantidades de calor, debido a los procesos y gran trabajo que este realiza, es por eso que necesitan un sistema de enfriamiento o refrigeración que permita mantener un nivel de calor óptimo para evitar así que se queme y este trabaje adecuadamente sin que se recaliente.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Comúnmente estos componentes se colocan encima del chip y esta compuesto de aluminio que es un material fácil de enfriarse debido a su composición y se aseguran mediante un gancho metálico, acompañado de un extractor o disipador de calor para enfriar el aluminio y mantener la temperatura.

Ranuras de Memoria

Son los conectores donde se inserta la memoria principal de la PC, llamada RAM.

Estos conectores han ido variando en tamaño, capacidad y forma de conectarse, Este proceso ha seguido hasta llegar a los actuales módulos DIMM y RIMM de 168/184 contactos.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Chip BIOS / CMOS

La BIOS (Basic Input Output System – Sistema básico de entrada / salida) es un chip que incorpora un programa que se encarga de dar soporte al manejo de algunos dispositivos de entrada y salida. Físicamente es de forma rectangular y su conector de muy sensible.

Además, el BIOS conserva ciertos parámetros como el tipo de algunos discos duros, la fecha y hora del sistema, etc. los cuales guarda en una memoria del tipo CMOS, de muy bajo consumo y que es mantenida con una pila cuando el sistema sin energía. Este programa puede actualizarse, mediante la extracción y sustitución del chip que es un método muy delicado o bien mediante software, aunque sólo en el caso de las llamadas Flash-BIOS.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Ranuras de expansión:

Son las ranuras donde se insertan las tarjetas de otros dispositivos como por ejemplo tarjetas de vídeo, sonido, módem, etc. Dependiendo la tecnología en que se basen presentan un aspecto externo diferente, con diferente tamaño e incluso en distinto color.

  • ISA: Una de las primeras, funcionan a unos 8 MHz y ofrecen un máximo de 16 MB/s, suficiente para conectar un módem o una placa de sonido, pero muy poco para una tarjeta de vídeo. Miden unos 14 cm y su color suele ser generalmente negro.
  • Vesa Local Bus: empezaron a a usarse en los 486 y estos dejaron de ser comúnmente utilizados desde que el Pentium hizo su aparición, ya que fue un desarrollo a partir de ISA, que puede ofrecer unos 160 MB/s a un máximo de 40 MHz. eran muy largas de unos 22 cm, y su color suele ser negro con el final del conector en marrón u otro color.
  • PCI: es el estándar actual. Pueden dar hasta 132 MB/s a 33 MHz, lo que es suficiente para casi todo, excepto quizá para algunas tarjetas de vídeo 3D. Miden unos 8,5 cm y casi siempre son blancas.
  • AGP: actualmente se utiliza exclusivamente para conectar tarjetas de vídeo 3D, por lo que sólo suele haber una. Según el modo de funcionamiento puede ofrecer 264 MB/s o incluso 528 MB/s. Mide unos 8 cm, se encuentra a un lado de las ranuras PCI, casi en la mitad de la tarjeta madre o principal.

La mayoría de las tarjetas madres o principales tienen más ranuras PCI, entre 5 y 6, excepto algunas tarjetas madre que tienen Una ya que manejan el sonido, video, módem y fax de forma integrada mediante chips. Generalmente tienen una ranura ISA por cuestiones de compatibilidad o emergencia y una ranura AGP. Algunas cuentan con una ranura adicional para el caché externo muy similar a las ranuras de AGP.

Conectores más comunes:

Conectores ExternosSon conectores para dispositivos periféricos externos como el teclado, ratón, impresora, módem externo, cámaras web, cámaras digitales, scanner, tablas digitalizadoras, entre otras. En las tarjetas AT lo único que está en contacto con la tarjeta son unos cables que la unen con los conectores en sí, excepto el de teclado que sí está soldado a la propia tarjeta. En las tarjetas ATX los conectores están todos concentrados y soldados a la placa base.

Conectores Internos

Son conectores para dispositivos internos, como pueden ser la unidad de disco flexible o comúnmente llamada disquete, el disco duro, las unidades de CD, etc. Además para los puertos seriales, paralelo y de juego si la tarjeta madre no es de formato ATX. Antiguamente se utilizaba una tarjeta que permitía la conexión con todos estos tipos de dispositivos. Esta tarjeta se llamaba tarjeta controladora.

Para este tipo de conectores es necesario identificar el PIN número 1 que corresponde al color Rojo sólido o punteado y orienta la conexión al PIN 1 del conector de la tarjeta principal.

Conectores Eléctricos

En estos conectores es donde se le da vida a la computadora, ya que es allí donde se le proporciona la energía desde la fuente de poder a la tarjeta madre o principal. En la tarjeta madre AT el conector interno tiene una serie de pines metálicos salientes y para conectarse se debe tomar en cuenta que consta de cuatro cables negros (dos por cable), que son de polo a tierra y deben estar alienados al centro. En las tarjetas ATX, estos conectores tiene un sistema de seguridad en su conector plástico, para evitar que se conecte de una forma no adecuada; puede ser una curva o una esquina en ángulo.Una de las ventajas de las fuentes ATX es que permiten el apagado del sistema por software; es decir, que al pulsar “Apagar el sistema” en Windows el sistema se apaga solo.

Para ver los gráficos seleccione la opción “Descargar” del menú superior

Pila del computador

La pila permite suministrar la energía necesaria al Chip CMOS para que el BIOS se mantenga actualizado con los datos configurados. Esta pila puede durar entre 2 a 5 años y tiene voltaje de 3.5 V y es muy similar a las del reloj solo que un poco más grande. La forma de conectarse es muy fácil, ya que las mayorías de las tarjetas madre incorporan un pequeño conector para ella en donde ajusta a presión.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

El Microprocesador

Unidad central de proceso (conocida por sus siglas en inglés, CPU), circuito microscópico que interpreta y ejecuta instrucciones. La CPU se ocupa del control y el proceso de datos en las computadoras. Generalmente, la CPU es un microprocesador fabricado en un chip, un único trozo de silicio que contiene millones de componentes electrónicos.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

El microprocesador de la CPU está formado por una unidad aritmético-lógica que realiza cálculos y comparaciones, y toma decisiones lógicas (determina si una afirmación es cierta o falsa mediante las reglas del álgebra de Boole); por una serie de registros donde se almacena información temporalmente, y por una unidad de control que interpreta y ejecuta las instrucciones. Para aceptar órdenes del usuario, acceder a los datos y presentar los resultados, la CPU se comunica a través de un conjunto de circuitos o conexiones llamado bus. El bus conecta la CPU a los dispositivos de almacenamiento (por ejemplo, un disco duro), los dispositivos de entrada (por ejemplo, un teclado o un mouse) y los dispositivos de salida (por ejemplo, un monitor o una impresora).

El microprocesador es un tipo de circuito integrado. Los circuitos integrados, también conocidos como microchips o chips, son circuitos electrónicos complejos y están formados por componentes microscopicos formados en una única pieza plana de un material conocido como semiconductor. Estos incorporan millones de transistores, además de otros componentes como resistencias, diodos, condensadores, etc. Todo ello a un tamaño aproximado de 4 x 4 centimetros, cuentan con muchos pines conectores y generalmente la placa es de color gris.

Un microprocesador consta de varias partes. La unidad aritmético-lógica (ALU, siglas en inglés) efectúa cálculos con números y toma decisiones lógicas; los registros son zonas de memoria especiales para almacenar información temporalmente; la unidad de control descodifica los programas; los buses transportan información digital a través del chip y de la computadora; la memoria local se emplea para los cómputos realizados en el mismo chip. Los microprocesadores más complejos contienen a menudo otras secciones; por ejemplo, secciones de memoria especializada denominadas memoria cache , que sirven para acelerar el acceso a los dispositivos externos de almacenamiento de datos. Los microprocesadores modernos funcionan con una anchura de bus de 64 bits (un bit es un dígito binario, una unidad de información que puede ser un uno o un cero): esto significa que pueden transmitirse simultáneamente 64 bits de datos.

Cuando se ejecuta un programa, el registro de la CPU, llamado contador de programa, lleva la cuenta de la siguiente instrucción, para garantizar que las instrucciones se ejecuten en la secuencia adecuada. La unidad de control de la CPU coordina y temporiza las funciones de la CPU, tras lo cual recupera la siguiente instrucción desde la memoria. En una secuencia típica, la CPU localiza la instrucción en el dispositivo de almacenamiento correspondiente. La instrucción viaja por el bus desde la memoria hasta la CPU, donde se almacena en el registro de instrucción. Entretanto, el contador de programa se incrementa en uno para prepararse para la siguiente instrucción. A continuación, la instrucción actual es analizada por un descodificador, que determina lo que hará la instrucción. Cualquier dato requerido por la instrucción es recuperado desde el dispositivo de almacenamiento correspondiente y se almacena en el registro de datos de la CPU. A continuación, la CPU ejecuta la instrucción, y los resultados se almacenan en otro registro o se copian en una dirección de memoria determinada.

Un cristal oscilante situado en el computador proporciona una señal de sincronización, o señal de reloj, para coordinar todas las actividades del microprocesador. La velocidad de reloj de los microprocesadores más avanzados es de unos 800 megahercios (MHz) —unos 800 millones de ciclos por segundo—, lo que permite ejecutar más de 1.000 millones de instrucciones cada segundo.

4. El Microprocesador en las Computadoras

Un sistema de computadora cuenta con una unidad que ejecuta instrucciones de programas. Esta unidad se comunica con otros dispositivos dentro de la computadora, y a menudo controla su operación. Debido al papel central de tal unidad se conoce como unidad central de procesamiento (microprocesador), o CPU (Central processing unit).

Dentro de muchas computadoras, un dispositivo como una unidad de entrada, o uno de almacenamiento masivo, puede incorporar una unidad de procesamiento propia, sin embargo tal unidad de procesamiento, aunque es central para su propio subsistema, resulta claro que no es “central” para el sistema de computadora en su conjunto. Sin embargo, los principios del diseño y operación de una CPU son independientes de su posición en un sistema de computadora. Este trabajo estará dedicado a la organización del hardware que permite a una CPU realizar su función principal: traer instrucciones desde la memoria y ejecutarlas.

El microprocesador se lo conoce también con el nombre de “CPU” aunque algunos le llaman así a la caja con todos sus componentes internos.

La CPU no reconoce los números que maneja ya que sólo se trata de una máquina matemática, la razón por la cual nuestra computadora puede proveernos de un entorno cómodo para trabajar o jugar es que los programas y el hardware “entienden” esos números y pueden hacer que la CPU realice ciertas acciones llamadas instrucciones.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Partes principales del microprocesador:

Encapsulado: es lo que rodea a la oblea de silicio en sí, para darle consistencia, impedir su deterioro como por ejemplo por oxidación con el aire y permitir el enlace con los conectores externos que lo acoplarán a su zócalo o a la placa base directamente.

Memoria caché: una memoria ultrarrápida que almacena ciertos bloques de datos que posiblemente serán utilizados en las siguientes operaciones sin tener que acudir a la memoria RAM, aumentando as í la velocidad y diminuyendo la el número de veces que la PC debe acceder a la RAM. Se la que se conoce como caché de primer nivel, L1 (level 1) ó caché interna, es decir, la que está más cerca del micro, tanto que está encapsulada junto a él, todos los micros tipo Intel desde el 486 tienen esta memoria.

Coprocesador matemático: es la FPU (Floating Point Unit – Unidad de coma Flotante) parte del micro especializada en esa clase de cálculos matemáticos; también puede estar en el exterior del micro, en otro chip.

Unidad lógica aritmética (ALU): es el último componente de la CPU que entra en juego. La ALU es la parte inteligente del chip, y realiza las funciones de suma, resta, multiplicación o división. También sabe cómo leer comandos, tales como OR, AND o NOT. Los mensajes de la unidad de control le dicen a la ALU qué debe hacer .

Unidad de control: es una de las partes más importantes del procesador, ya que regula el proceso entero de cada operación que realiza. Basándose en las instrucciones de la unidad de decodificación, crea señales que controlan a la ALU y los Registros. La unidad de control dice qué hacer con los datos y en qué lugar guardarlos. Una vez que finaliza, se prepara para recibir nuevas instrucciones.

Prefetch Unit: esta unidad decide cuándo pedir los datos desde la memoria principal o de la caché de instrucciones, basándose en los comandos o las tareas que se estén ejecutando. Las instrucciones llegan a esta unidad para asegurarse de que son correctas y pueden enviarse a la unidad de decodificación.

Unidad de decodificación: se encarga, justamente, de decodificar o traducir los complejos códigos electrónicos en algo fácil de entender para la Unidad Aritmética Lógica (ALU) y los Registros .

Registros: son pequeñas memorias en donde se almacenan los resultados de las operaciones realizadas por la ALU por un corto período de tiempo.

Velocidad del Reloj

En la CPU, todas las partes internas trabajan sincronizadas, gracias a un reloj interno que actúa como metrónomo. Con cada ciclo de reloj, el micro puede ejecutar una instrucción del software.

La velocidad de reloj es la cantidad de ciclos por segundo generados, cuanto más alto sea ese valor, más veloz será la PC típicamente, un micro cualquiera trabaja a una velocidad de unos 500 MHz y más, lo cual significa 500 millones de ciclos por segundo.

Debido a la extrema dificultad de fabricar componentes electrónicos que funcionen a las inmensas velocidades de MHz habituales hoy en día, todos los micros modernos tienen 2 velocidades:

  • Velocidad interna: la velocidad a la que funciona el micro internamente 200, 333, 450, 500, 750, 1000, etc. etc. MHz.
  • Velocidad externa o de bus: o también FSB, la velocidad con la que se comunican el micro y la placa base, típicamente, 33, 60, 66, 100, 133, 200, 233, etc. etc. MHz.

¿Qué es el multiplicador?

Es la cifra por la que se multiplica la velocidad externa o de la placa base para dar la interna o del micro, por ejemplo, un AMD K6-II a 550 MHz o un Pentium III, utiliza una velocidad de bus de 100 MHz y un multiplicador 5,5x.

¿Qué es la unidad de bus?

Es por donde fluyen los datos desde y hacia el procesador , es decir, que los datos viajan por caminos (buses) que pueden ser de 8, 16, 32 y en micros modernos hasta 64 bits, (mas precisamente son 8, 16, etc. líneas de datos impresas en el micro)ya sea por dentro del chip (internamente) o cuando salen (externamente), por ejemplo para ir a la memoria principal (RAM) .

LA MEMORIA RAM

La memoria RAM (Random Access Memory , Memoria de Acceso Aleatorio) es donde se guardan los datos que están utilizando en el momento y es temporal.

Físicamente, los chips de memoria son de forma rectangular y suelen ir soldados en grupos a una placa con “pines” o contactos.

La RAM a diferencia de otros tipos de memoria de almacenamiento, como los disquetes o los discos duros, es que la RAM es mucho más rápida, y se borra cuando se apaga el computador.

Cuanta más memoria RAM se tenga instalada mejor. Actualmente lo recomendable es 128 MB o superior, aunque con 64 MB un equipo con windows 98 correría bien. La cantidad de memoria depende del tipo de aplicaciones que se ejecuten en el computador, por ejemplo si un equipo que será utilizado para editar video y sonido, necesita al menos 512 MB o más para poder realizar tareas complejas que implican el almacenamiento de datos de manera temporal.

Módulos de Memoria

Los tipos de placas en donde se encuentran los chips de memorias, comúnmente reciben el nombre de módulos y estos tienen un nombre, dependiendo de su forma física y evolución tecnológica. Estos son:

SIP: (Single In-line Packages – Paquetes simples de memoria en línea) estos tenían pines en forma de patitas muy débiles, soldadas y que no se usan desde hace muchos años. Algunas marcas cuentan con esas patitas soldadas a la placa base pero eran difíciles de conseguir y muy costosas.

SIMM: (Single In-line Memory Module – Módulos simples de memoria en línea) existen de 30 y 72 contactos. Los de 30 contactos manejan 8 bits cada vez, por lo que en un procesador 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. los de 30 contactos miden 8,5 cm y los de 72 contactos 10,5 cm. Las ranuras o bancos en donde se conectan esta memorias suelen ser de color blanco.

Los SIMM de 72 contactos manejan 32 bits, por lo que se usan de 1 en 1 en los 486; en los Pentium se haría de 2 en 2 módulos (iguales), porque el bus de datos de los Pentium es el doble de grande (64 bits).

DIMM: (Dual In-line Memory Module – Módulos de memoria dual en línea) de 168 y 184 contactos, miden unos 13 a 15 cm y las ranuras o bancos son generalmente de color negro, llevan dos ganchos plasticos de color blanco en los extremos para segurarlo. Pueden manejar 64 bits de una vez, Existen de 5, 3.3, 2.5 voltios.

RIMM: (Rambus In-line Memory Module) de 168 contactos, es el modelo mas nuevo en memorias y es utilizado por los últimos Pentium 4, tiene un diseño moderno, un bus de datos más estrecho, de sólo 16 bits (2 bytes) pero funciona a velocidades mucho mayores, de 266, 356 y 400 MHz. Además, es capaz de aprovechar cada señal doblemente, de forma que en cada ciclo de reloj envía 4 bytes en lugar de 2.

Tipos de Memoria

Existen muchos tipos de memoria, por lo que solo se mostraran las más importantes.

DRAM (Dinamic-RAM): es la original, y por lo tanto la más lenta, usada hasta la época del 386, su velocidad de refresco típica era de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Físicamente, en forma de DIMM o de SIMM, siendo estos últimos de 30 contactos.

FPM (Fast Page): más rápida que la anterior, por su estructura (el modo de Página Rápida) y por ser de 70 ó 60 ns. Usada hasta con los primeros Pentium, físicamente SIMM de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486).

EDO (Extended Data Output-RAM): permite introducir nuevos datos mientras los anteriores están saliendo lo que la hace un poco más rápida que la FPM. Muy común en los Pentium MMX y AMD K6, con refrescos de 70, 60 ó 50 ns. Físicamente SIMM de 72 contactos y DIMM de 168.

SDRAM (Sincronic-RAM): Funciona de manera sincronizada con la velocidad de la placa base (de 50 a 66 MHz), de unos 25 a 10 ns. Físicamente solo DIMM de 168 contactos, es usada en los Pentium II de menos de 350 MHz y en los Celeron.

PC100: memoria SDRAM de 100 MHz, que utilizan los AMD K6-II, III, Pentium II y micros más modernos.

PC133: memoria SDRAM de 133 MHz, similar a la anterior, con la diferencia de que funciona a 133 MHz. Provee de un ancho de banda mucho más grande.

PC266: también DDR-SDRAM ó PC2100, y sin mucho que agregar a lo dicho anteriormente, simplemente es lo mismo con la diferencia de que en vez de 100 MHz físicos se utilizan 133 MHz obteniendo así 266 MHz y 2,1 GB de ancho de banda.

PC600: o también RDRAM, de Rambus, memoria de alta gama y muy cara que utilizan los Pentium 4, se caracteriza por utilizar dos canales en vez de uno y ofrece una transferencia de 2 x 2 bytes/ciclo x 266 MHz que suman un total de 1,06 GB/seg.

PC800: también RDRAM, de Rambus, la ultima de la serie y obviamente la de mejor rendimiento, ofreciendo 2 x 2 bytes/ciclo x 400 MHz que hacen un total de 1,6 GB/seg. y como utiliza dos canales, el ancho de banda total es de 3,2 GB/seg.

EL DISCO DURO

El disco duro es el dispositivo en donde se almacena la información de manera permanente, pero puede ser borrada cuando sea necesario.

Un disco duro se organiza en discos o platos similares al disco compacto (CD) pero de un material metálico, y en la superficie de cada una de sus dos caras existen pistas, como las líneas o surcos de un disco de vinilo, y las pistas se dividen en sectores como por ejemplo una porción de Pizza. El disco duro tiene una cabeza lectora en cada lado de cada plato, y esta cabeza es movida por un motor cuando busca los datos almacenados en algún lugar específico del disco.

Los Cilindros son el parámetro de organización: el cilindro está formado por las pistas de cada cara de cada plato que están situadas unas justo encima de las otras, de modo que la cabeza no tiene que moverse para acceder a las diferentes pistas de un mismo cilindro.

En cuanto a organización lógica, cuando hacemos formato lógico lo que hacemos es agrupar los sectores en unidades de asignación (CLUSTERS) que es donde se almacenan los datos de manera organizada. Cada unidad de asignación sólo puede ser ocupado por un archivo (nunca dos diferentes), pero un archivo puede ocupar más de una unidad de asignación.

Cuando se buscan datos en el disco duro, la cabeza lee primero la tabla de asignación de archivos (FAT), que está situada al comienzo de la partición. La FAT le dice en qué pista, en qué sector y en que unidad de asignación están los datos, y la cabeza se dirige a ese punto a buscarlos.

Capacidad de Almacenamiento

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Actualmente la mayoría de las aplicaciones contienen grandes cantidades de información y ocupan mucho espacio, por lo que es necesario considerar un disco con suficiente capacidad de almacenamiento y no quedar cortos de espacio al momento de instalar nuevos programas. Un disco de 4 GB alcanza al menos para instalar un sistema operativo, pero sin todas sus demás aplicaciones complementarias. Además teniendo en cuenta que necesitaremos algunas aplicaciones de oficina, navegadores de internet, herramientas de sistema como antivirus, componentes multimedia y el almecenamiento de datos realizados en los mismo programas y archivos de imagenes, sonido y video que son grandes. En definitiva es necesario tener un disco bueno al menos con suficiente espacio adicional, no solo para el almacenamiento permanente, sino también pára el temporal, ya que algunas aplicaciones desempaquetan archivos compilados que se utilizan de manera temporal mientras se realizan otras gestiones.

Actualmente los tamaños en cuanto a la capacidad de almacenamiento de un disco duro se encuentra entre los 40 y 120 GB.

Velocidad de rotación (RPM)

RPM = Revoluciones por minuto, es la velocidad a la que giran los discos o platos internos. A mayor velocidad mayor será la transferencia de datos, pero aumentará el ruido y aumentara la temperatura debido a la velocidad, es por eso que se recomienda que los discos esten separados entre si y al igual que de los demás dispositivos como unidades de CD o entre otros que comparten el mismo espacio dentro de la caja para una mejor ventilación y rendimiento.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Existen dos tipos de revoluciones estándar; de 5400 RPM que transmiten entre 10 y 16 MB y de 7200 RPM que son más rápidos y su transferencia es alta. también hay discos SCSI que estan entre los 7200 y 10.000 RPM.

Tiempo de Acceso

Es el tiempo medio necesario que tarda la cabeza del disco en acceder a los datos que necesitamos. Realmente es la suma de varias velocidades:

  • El tiempo que tarda el disco en cambiar de una cabeza a otra cuando busca datos.
  • El tiempo que tarda la cabeza lectora en buscar la pista con los datos saltando de una a otra.
  • El tiempo que tarda la cabeza en buscar el sector correcto dentro de la pista.

Es uno de los factores más importantes a la hora de escoger un disco duro. Cuando se oye hacer ligeros clicks al disco duro, es que está buscando los datos que le hemos pedido. Hoy en día en un disco moderno, lo normal son 10 milisegundos.

Tasa de Transferencia

Este número indica la cantidad de datos un disco puede leer o escribir en la parte más exterior del disco o plato en un periodo de un segundo. Normalmente se mide en Mbits/segundo, y hoy en día, en un disco de 5400RPM, un valor habitual es 100Mbits/s.

Tipos Interfaz

Es el método de conexión utilizado por el disco duro y se pueden clasificar en dos tipos: IDE o SCSI.

Todas las tarjetas madres o principales relativamente recientes, incluso desde los 486, incorporan una controladora de interfaz IDE, que soporta dos canales, con una capacidad para dos discos cada una, lo que hace un total de hasta cuatro unidades IDE (disco duro, CD-ROM, unidad de backup, etc.)

Debemos recordar, sin embargo, que si colocamos en un mismo canal dos dispositivos IDE (e.g. disco duro+CD-Rom), para transferir datos uno tiene que esperar a que el otro haya terminado de enviar o recibir datos, y debido a la comparativa lentitud del CD-ROM con respecto a un disco duro, esto ralentiza mucho los procesos, por lo que es muy aconsejable colocar el CD-ROM en un canal diferente al de el/los discos duros.

Recientemente se ha implementado la especificación ULTRA-ATA o ULTRA DMA/33, que puede llegar a picos de transferencia de hasta 33,3MB/s. Este es el tipo de disco duro que hay que comprar, aunque nuestra controladora IDE no soporte este modo (sólo las placas base Pentium con chipset 430TX y las nuevas placas con chipsets de VIA y ALI, y la placas Pentium II con chipset 440LX y 440BX lo soportan), pues estos discos duros son totalmente compatibles con los modos anteriores, aunque no les sacaremos todo el provecho hasta que actualicemos nuestro equipo.

En cuanto al interfaz SCSI, una controladora de este tipo suele tener que comprarse aparte (aunque algunas placas de altas prestaciones integran este interfaz) y a pesar de su precio presenta muchas ventajas.

Se pueden conectar a una controladora SCSI hasta 7 dispositivos (o 15 si es WIDE SCSI) de tipo SCSI (ninguno IDE), pero no solo discos duros, CD-ROMS y unidades de BACKUP, sino también grabadoras de CD-ROM (las hay también con interfaz IDE), escáneres, muchas de las unidades de BACKUP, etc.

Otra ventaja importante es que la controladora SCSI puede acceder a varios dispositivos al mismo tiempo, sin esperar a que cada uno acabe su transferencia, como en el caso del interfaz IDE, aumentando en general la velocidad de todos los procesos.

Las tasas de transferencia del interfaz SCSI vienen determinados por su tipo (SCSI-1, Fast SCSI o SCSI-2, ULTRA SCSI, ULTRA WIDE SCSI), oscilando entre 5MB/s hasta 80MB/s. Si el equipo va a funcionar como servidor, como servidor de base de datos o como estación gráfica, por cuestiones de velocidad, el interfaz SCSI es el más recomendable.

Estructura básica de un disco duro

Para ver el gráfico seleccione la opción “Descargar” del menú superior

En la figura se muestra la estructura básica de un disco duro que incluye:

  1. Uno o más platos de aluminio recubiertos en ambas caras de material magnético, los cuales van montados uno sobre otro en un eje común a una distancia suficiente para permitir el paso del ensamble que mueve las cabezas. Cada de unos de estos platos es semejante a un disquete.
  2. Un motor para hacer girar los platos a una velocidad comprendida entre 3.600 y 7,200 revoluciones por minuto; aunque también encontramos discos cuya velocidad de giro alcanza las 10.000 RPM, lo que da mayor velocidad de acceso para aplicaciones especiales como la grabación de video de alta calidad.
  3. Cabezas de lectura/escritura magnética, una por cada cara.
  4. Un motor o bobina para el desplazamiento de las cabezas hacia fuera y hacia dentro de cada uno de los platos.
  5. Una etapa electrónica que sirve como interfaz entre las cabezas de lectoescritura y la tarjeta controladora de puertos y discos.
  6. Una caja hermética para protección de los platos y las cabezas contra polvo y otras impurezas peligrosas para la información.

La base física de un disco duro es similar a la de un disquete, ya que la información digital se almacena en discos recubiertos de material ferro-magnético. Los datos se graban y se leen por medio de cabezas magnéticas ubicadas en ambas caras del disco siguiendo el mismo patrón de cilindros (anillos concéntricos grabados en la superficie del disco) y sectores (particiones radiales en las cuales se divide cada uno de los cilindros). La cantidad de Bytes que se pueden grabar por sector es de 512, por lo que puede calcularse la capacidad total de un disco en Bytes multiplicando el número de cilindros por el número de cabezas, por el número de sectores y finalmente por 512 Bytes

Para ver el gráfico seleccione la opción “Descargar” del menú superior

  1. Las unidadesCD-R (Compact Disk Recordable)

Las unidades de CD son dispositivos que permiten leer o escribir información. Un disco compacto (CD) almacena la información en medio digital, mediante código binario, o sea unos y ceros. Esta información se representa como agujeros diminutos en el material especial. Los discos compactos son físicamente redondos, similares al tamaño de un plato pequeño con un agujero en el medio, en donde la unidad puede sostenerlo. La información se graba en un material metálico muy fino y protegido por una capa plástica.

Las unidades de CD se han convertido en un estándar en el almacenamiento de información masiva y portátil, ya sea para la industria de la música como de software y juegos de computadores. Las computadoras de hoy en día cuentan por lo general con una unidad de CD-ROM que como su nombre lo dice es CD de Solo Lectura ROM = Read Only Memory y solo se limitan a leer el contenido. Sin embargo la tecnología ha evolucionado de tal forma en que los CD pueden ser reutilizados, pero con unidades y discos compactos especiales para esto.

Para leer el CD se emite un haz de láser directamente sobre dicha pista, cuando el láser toca una parte plana, es decir sin muesca, la luz es directamente reflejada sobre un sensor óptico, lo cual representa un uno (1). Si el haz toca una parte con muesca, es desviado fuera del sensor óptico y se lo interpreta como un cero (0). Todo esto sucede mientras el CD gira y tanto el láser como el sensor se mueven desde el centro hacia fuera del CD.

Unidades Lectoras (CD-ROM)

Estas unidades como su nombre lo dice, permiten leer la información de los CD, pero no pueden modificar su contenido. Estas comúnmente se colocan dentro del computador (Internas) en la parte superior de las torres.

Unidades Grabadoras (CD-R / RW)

Estas unidades permiten grabar solo en CD con capacidad para grabado. Estas unidades cambiaron la forma en que se almacenaban los datos en los hogares y el trabajo, ya que con este sistema se pueden grabar desde 650 MB de Datos o 74 MIN de Audio que fueron los primeros discos compactos hasta 700 MB de Datos y 80 MIN de audio los actuales.

Las unidades de CD-R solo pueden grabar una sola vez y no pueden volver a grabar en él, a diferencia de las unidades de Re-Escritura (CD RW) que permiten grabar y volver a grabar en el mismo disco, hasta permiten borrar el disco completamente y volver a grabar nueva información cuantas veces sea necesario.

Unidades de DVD

El DVD funciona bajo los mismos principios y esta compuesto por los mismos materiales de un CD. La diferencia es que la espiral dentro del disco es mucho mas densa (fina), lo que hace que las muescas sean más chicas y las pistas mas largas. También tienen la capacidad de almacenar información en las dos caras del disco, lo que le permite contar con capacidades de almacenamiento de hasta 17 GB a diferencia de los CD convencionales que pueden almacenar 650, 700 MB. Existen unidades de CD DVD multizonas que pueden reproducir películas que son de estreno en otros países, este sistema fue inventado precisamente ya que las películas no se estrenan al mismo tiempo en todos los países y es necesario controlar la distribución de las mismas para evitar la piratería.

El DVD permite almacenar desde 4.5 o 4.7 GB de datos (disco de una cara sencilla) hasta 17 GB (disco de dos caras con doble estratificación), es decir, de 7 a 26 veces la capacidad de un CD ROM, con la ventaja de que la unidad reproductora es compatible con los CD y los CD-ROM comunes.

Esta gran capacidad, junto con las nuevas tecnologías de compresión de datos, audio y video, permite por ejemplo, almacenar en un mismo disco hasta 10 millones de páginas de texto, dos películas completas con traducciones a varios idiomas y cientos de piezas musicales, permite grabar una película entera, con calidad de imagen digital, en un disco de dimensiones idénticas a los populares CDs de audio, de hecho, su principio de operación es prácticamente idéntico al de un disco compacto tradicional, sólo que ahora se emplea un láser de menor longitud de onda, lo que significa que la información puede ser grabada en pits más pequeños y en una menor separación entre pistas. Además, se utiliza un método de compresión de datos y grabación en capas o estratos, lo que incrementa la capacidad de almacenamiento.

La extraordinaria densidad de información, es ideal para las modernas aplicaciones multimedia que necesitan imágenes de alta resolución o grandes cantidades de video y audio digitalizado, sólo como referencia, algunos juegos de computadora necesitan de varios CD-ROMs, los cuales podrían ser sustituidos fácilmente por un DVD.

Velocidad de lectura

Cuanta mayor sea la velocidad, mejor será la respuesta del sistema a la hora de leer o grabar la información desde el CD. Los valores que se han ido tomando, son 1x, 2x, 3x, … 36x y 40x. Cada X equivale a 150 Kb/seg. Actualmente existen de 48X 52X, 56X, etc. Sin embargo hay que tomar en cuenta que no todas las unidades de CD-RW graban a velocidades tan altas, si se desea hacer, hay que adquirir un disco compacto que soporte el copiado a dicha velocidad.

Un CD-R puede retener información por más de 100 años. En el mercado actual, son muchas las opciones que se ofrecen con respecto a este tipo de medio de almacenamiento. Ya son muchos los fabricantes de este tipo de unidades entre los que podemos destacar a Hewlett Packard, Sony, Philips, Panasonic, LG, entre otros.

Tarjetas de video

La cantidad de imágenes que puede desplegar un monitor está definida tanto la tarjeta de video como por la resolución de colores de la pantalla. La tarjeta de video es un dispositivo que permite enviar la información de video que el monitor desplegará. Físicamente consiste en una placa de circuitos con chips para la memoria y otros necesarios para enviar la información al monitor.

Esta se conecta a la tarjeta madre del computador a través de un conector, dependiendo de la tecnología actual.

Durante la década de 1980, cuando la mayor parte de las PC ejecutaban DOS y no Windows, la pantalla desplegaba caracteres ASCII. Hacer esto requería poco poder de procesamiento porque sólo había 256 caracteres posibles y 2000 posiciones de texto en la pantalla.

Las interfaces gráficas envían información al controlador de video sobre cada pixel en la pantalla. Con una resolución mínima de 640 x 480, hay que controlar 307 200 pixeles. La mayoría de los usuarios corren sus monitores con 256 colores, así que cada pixel requiere un Byte de información. Por tanto, la computadora debe enviar 307 200 Bytes al monitor para cada pantalla.

Si el usuario desea más colores o una resolución superior, la cantidad de datos puede ser mucho mayor. Por ejemplo, para la cantidad máxima de color (24 bits por pixel producirán millones de colores) a 1 204 x 768, la computadora debe enviar 2 359 296 Bytes al monitor para cada pantalla.

El procedimiento de estas demandas de procedimiento es que los controladores de video han incrementado grandemente su potencia e importancia. Hay un microprocesador en el controlador de video y la velocidad del chip limita la velocidad a la que el monitor puede refrescarse. En la actualidad, la mayor parte de los controladores de video también incluyen al menos 2 MB de RAM de video o VRAM.

Tipos de Tarjetas de Video

MDA (Adaptador de Pantalla Monocromo)

Las primeras PC’s solo visualizaban textos. El MDA contaba con 4KB de memoria de video RAM que le permitía mostrar 25 líneas de 80 caracteres cada una con una resolución de 14×9 puntos por carácter.

Placa gráfica Hércules

Con ésta placa se podía visualizar gráficos y textos simultáneamente. En modo texto, soportaba una resolución de 80×25 puntos. En tanto que en los gráficos lo hacía con 720×350 puntos, dicha placa servía sólo para gráficos de un solo color.
La placa Hércules tenía una capacidad total de 64k de memoria video RAM. Poseía una frecuencia de refresco de la pantalla de 50HZ.

CGA (Color Graphics Adapter)

La CGA utiliza el mismo chip que la Hércules y aporta resoluciones y colores distintos. Los tres colores primarios se combinan digitalmente formando un máximo de ocho colores distintos. La resolución varía considerablemente según el modo de gráficos que se esté utilizando, como se ve en la siguiente lista:

  • 160 x 100 puntos con 16 colores.
  • 320 x 200 puntos con 4 colores.
  • 640 x 200 puntos con 2 colores.

EGA (Enchanced Graphics Adapter)

Se trata de una placa gráfica superior a la CGA. En el modo texto ofrece una resolución de 14×18 puntos y en el modo gráfico dos resoluciones diferentes de 640×200 y 640×350 a 4 bits, lo que da como resultado una paleta de 16 colores, siempre y cuando la placa esté equipada con 256KB de memoria de video RAM.

VGA (Video Graphics Adapter)

Significó la aparición de un nuevo estándar del mercado. Esta placa ofrece una paleta de 256 colores, dando como resultado imágenes de colores mucho más vivos. Las primeras VGA contaban con 256KB de memoria y solo podían alcanzar una resolución de 320×200 puntos con la cantidad de colores mencionados anteriormente. Primero la cantidad de memoria video RAM se amplió a 512KB, y más tarde a 1024KB, gracias a ésta ampliación es posible conseguir una resolución de, por ejemplo, 1024×768 pixeles con 8 bits de color. En el modo texto la VGA tiene una resolución de 720×400 pixeles, además posee un refresco de pantalla de 60HZ, y con 16 colores soporta hasta 640X480 puntos.

SVGA (Super Video Graphics Adapter)

La placa SVGA contiene conjuntos de chips de uso especial, y más memoria, lo que aumenta la cantidad de colores y la resolución.

El acelerador gráfico

La primera solución que se encontró para aumentar la velocidad de proceso de los gráficos consistió en proveer a la placa de un circuito especial denominado acelerador gráfico. El acelerador gráfico se encarga de realizar una serie de funciones relacionadas con la presentación de gráficos en la pantalla, que de otro modo, tendría que realizar el procesador. De esta manera, le quita tareas de encima a este último, y así se puede dedicar casi exclusivamente al proceso de datos.

El coprocesador gráfico

Posteriormente, para lograr una mayor velocidad se comenzaron a instalar en las placas de video otros circuitos especializados en el proceso de comandos gráficos, llamados coprocesadores gráficos. Se encuentran especializados en la ejecución de una serie de instrucciones específicas de generación de gráficos. En muchas ocasiones el coprocesador se encarga de la gestión del mouse y de las operaciones tales como la realización de ampliaciones de pantalla.

Aceleradores gráficos 3D

Los gráficos en tres dimensiones son una representación gráfica de una escena o un objeto a lo largo de tres ejes de referencia, X, Y, Z, que marcan el ancho, el alto y la profundidad de ese gráfico. Para manejar un gráfico tridimensional, éste se divide en una serie de puntos o vértices, en forma de coordenadas, que se almacenan en la memoria RAM. Para que ese objeto pueda ser dibujado en un monitor de tan sólo dos dimensiones (ancho y alto), debe pasar por un proceso que se llama renderización.

La renderización se encarga de modelar los pixeles (puntos), dependiendo de su posición en el espacio y su tamaño. También rellena el objeto, que previamente ha sido almacenado como un conjunto de vértices. Para llevar a cabo ésta tarea, se agrupan los vértices de tres en tres, hasta transformar el objeto en un conjunto de triángulos. Estos procesos son llevados a cabo entre el microprocesador y el acelerador gráfico. Normalmente, el microprocesador se encarga del procesamiento geométrico, mientras que el acelerador gráfico del rendering.

En pocas palabras, el microprocesador genera el objeto, y el acelerador gráfico lo “pinta”. El gran problema que enfrenta el microprocesador es que al construir los objetos 3D a base de polígonos, cuanto más curvados e irregulares se tornan los bordes del objeto, mayor es la cantidad de polígonos que se necesitan para aproximarse a su contextura. El problema es aún peor si además dicho objeto debe moverse, con lo cuál hay que generarlo varias decenas de veces en un lapso de pocos segundos.

9. Tarjetas de sonido

La tarjeta de sonido convierte los sonidos digitales en corriente eléctrica que es enviada a las bocinas. El sonido se define como la presión del aire que varia a lo largo del tiempo. Para digitalizar el sonido, las ondas son convertidas en una corriente eléctrica medida miles de veces por segundo y registrada con un número. Cuando el sonido se reproduce, la tarjeta de sonido invierte este proceso: traduce la serie de número en corriente eléctrica que se envía a las bocinas. El imán se mueve hacia adelante hacia adelante y hacia a tras creando vibraciones. Con el software correcto usted puede hacer más que solo grabar y reproducir sonidos digitalizados. Las unidades incorporadas en algunos sistemas operativos, proporcionan un estudio de sonido en miniaruta, permitiendo ver la banda sonora y editarla. En la edición puede cortar bits de sonido, copiarlos, amplificar las partes que desea escuchar las fuerte, eliminar la estática y crear muchos efectos acústicos.

DAC (Conversor Digital-Analógico / Analógico-Digital)

El DAC transforma los datos digitales emitidos en datos analógicos para que los parlantes los “interprete”. y el ADC se encarga de hacer exactamente lo mismo que el DAC, pero al revés, como por ejemplo, cuando se graba desde una fuente externa (Ej.: Teclado MIDI), se debe transformar esos datos analógicos que llegan por el cable, en datos digitales que se puedan almacenar.

Polifonía

Las placas de sonido toman las muestras de sonido generalmente a 16 bits. Se trata del número de voces, esos bits vienen a definir la posición del altavoz. Para emitir sonidos, los parlantes se mueven dando golpes. Estos golpes hacen que el aire que nos rodea vibre, y nuestros oídos captan esas vibraciones y las transforman en impulsos nerviosos que van a nuestro cerebro. Entonces, se le debe indicar al parlante dónde debe “golpear”. Para ello simplemente se le envía una posición, en este caso un número, cuantas más posiciones se pueda representar, mejor será el sonido. Y cuantos más bits, más posiciones podremos representar.

Bits Posiciones
8 bits 256 posiciones
16 bits 65536 posiciones

Sistemas MIDI

Los dispositivos de sonido incluyen un puerto MIDI, que permite la conexión de cualquier instrumento, que cumpla con esta norma, a la PC, e intercambiar sonido y datos entre ellos. Así, es posible controlar un instrumento desde la PC, enviándole las diferentes notas que debe tocar, y viceversa; para ello se emplean los llamados secuenciadores MIDI.

Un detalle interesante es que en el mismo puerto MIDI se puede conectar un Joystick, algo muy de agradecer por el usuario, puesto que normalmente los equipos no incorporaban de fábrica dicho conector.

Frecuencia de muestreo

Otra de las funciones básicas de una placa de sonido es la digitalización; para que la PC pueda tratar el sonido, debe convertirlo de su estado original (analógico) al formato que la PC “entienda”, binario (digital). En este proceso se realiza lo que se denomina muestreo, que es recoger la información y cuantificarla, es decir, medir la altura o amplitud de la onda. El proceso se realiza a una velocidad fija, llamada frecuencia de muestreo; cuanto mayor sea esta, más calidad tendrá el sonido, porque más continua será la adquisición del mismo.

Sintetizando, lo que acá nos interesa saber es que la frecuencia de muestreo es la que marcará la calidad de la grabación, por tanto, es preciso saber que la frecuencia mínima recomendable es de 44.1 KHz, con la que podemos obtener una calidad comparable a la de un disco compacto (CD). Utilizar mas de 44.1 Khz sería inútil, ¿porque? por el mismo motivo por el que el VHS emite 24 imágenes por segundo: si el ojo humano es capaz de reconocer como mucho unas 30 imágenes por segundo, sería una pérdida de medios y dinero emitir más de 50 imágenes por segundo por ejemplo. Por el simple hecho de que no notaríamos la diferencia. De la misma manera, el oído humano es capaz de reconocer unos 44.000 sonidos cada segundo, con lo que la utilización de un mayor muestreo no tendría ningún sentido, en principio.

Todas las placas de sonido hogareñas pueden trabajar con una resolución de 44.1KHz, y muchas incluso lo hacen a 48KHz. Las semiprofesionales trabajan en su mayoría con esos 48KHz, algunas incluso con 50KHz y por último las profesionales llegan cerca de los 100KHz.

Sonido 3D

El sonido 3D consiste en añadir un efecto dimensional a las ondas generadas por la placa, estas técnicas permiten ampliar el campo estéreo, y aportan una mayor profundidad al sonido habitual. Normalmente, estos efectos se consiguen realizando mezclas específicas para los canales derecho e izquierdo, para simular sensaciones de hueco y direccionalidad.

Seguro que les suenan nombres como SRS (Surround Sound), Dolby Prologic o Q-Sound; estas técnicas son capaces de ubicar fuentes de sonido en el espacio, y desplazarlas alrededor del usuario, el efecto conseguido es realmente fantástico, y aporta nuevas e insospechadas posibilidades al software multimedia y, en especial, a los juegos.

10. El módem.

El Módem (abreviatura de Modulador / Demodulador) se trata de un equipo, externo o interno (tarjeta módem), utilizado para la comunicación de computadoras a través de líneas analógicas de transmisión de voz y/o datos. El módem convierte las señales digitales del emisor en otras analógicas, susceptibles de ser enviadas por la línea de teléfono a la que deben estar conectados el emisor y el receptor. Cuando la señal llega a su destino, otro módem se encarga de reconstruir la señal digital primitiva, de cuyo proceso se encarga la computadora receptora. En el caso de que ambos puedan estar transmitiendo datos simultáneamente en ambas direcciones, emitiendo y recibiendo al mismo tiempo, se dice que operan en modo full-duplex; si sólo puede transmitir uno de ellos y el otro simplemente actúa de receptor, el modo de operación se denomina half-duplex. En la actualidad, cualquier módem es capaz de trabajar en modo full-duplex, con diversos estándares y velocidades de emisión y recepción de datos.

Para convertir una señal digital en otra analógica, el módem genera una onda portadora y la modula en función de la señal digital. El tipo de modulación depende de la aplicación y de la velocidad de transmisión del módem. Un módem de alta velocidad, por ejemplo, utiliza una combinación de modulación en amplitud y de modulación en fase, en la que la fase de la portadora se varía para codificar la información digital. El proceso de recepción de la señal analógica y su reconversión en digital se denomina demodulación. La palabra módem es una contracción de las dos funciones básicas: modulación y demodulación. Además, los módems se programan para ser tolerantes a errores; esto es, para poder comprobar la corrección de los datos recibidos mediante técnicas de control de redundancia (véase CRC) y recabar el reenvío de aquellos paquetes de información que han sufrido alteraciones en la transmisión por las líneas telefónicas.

Tipos de Módem

Internos:

Se instalan en la tarjeta madre, en una ranura de expansión (slot) y consisten en una placa compuesta por los diferentes componentes electrónicos que conforman un módem, para ofrecer un alto rendimiento. Hay para distintos tipos de conector:

  • ISA: debido a la baja velocidad que transfiere este tipo de conector, hoy en día no se utiliza.
  • PCI: es el conector más común y estándar en la actualidad.
  • AMR: presente sólo en algunas placas modernas, poco recomendables por su bajo rendimiento.

Externos:

Estos van fuera del computador, dentro de una caja protectora con luces indicadoras y botones de configuración. Se pueden ubicar sobre el escritorio o la mesa donde se ubica el computador. La conexión se realiza generalmente mediante el puerto serial (COM) o mediante el puerto USB, por lo que se usa el chip UART de la PC. Su principal ventaja es que son fáciles de instalar y no se requieren conocimientos técnicos básicos como en el caso de los internos, proporcionando facilidad para su instalación.

HSP o Winmodem:

Son internos y tienen pocos componentes electrónicos, como ser determinados chips, de manera que el microprocesador del PC debe suplir su función mediante software. Generalmente se conectan igual que los internos, aunque algunos se conectan directamente en la tarjeta madre, una de estas tarjetas son las PC-Chips. Claro está que son de menos desempeño ya que dependen de la CPU. Por muy rápido que sea el procesador son de igual manera lentos, ya que además, estas tarjetas madres que incorporan módems, casi siempre tienen video, sonido y red incorporados, y el trabajo del procesador es mucho mayor.

PCMCIA:

Se utilizan en computadoras portátiles, su tamaño es similar al de una tarjeta de crédito algo más gruesa, y sus capacidades pueden ser igual o más avanzadas que en los modelos normales.

Cable Módem:

Estos son los más modernos y se conectan comúnmente por conectores RF (RG58) que son iguales a los cables de la televisión. Está tecnología permite transferir grandes cantidades de información ya que cuentan con equipo de cabecera conectados a Internet por medio de fibra óptica o satelital y distribuye la conexión mediante nodos hacia nuestra casa. Estos módems son utilizados mayormente por los proveedores de TV, ya que ellos aprovechan el cableado para transmitir datos desde nuestro módem y luego hacia nuestro PC a través de conectores RJ45 o USB.

11. Sistema de sonidos

Parlantes o altavoces

Estos dispositivos de Salida, son los que le dan vida a nuestro computador, ya que a través de ellos podemos identificar los eventos que nuestro computador esta manifestando en el programa en ejecución. El término de Multimedia tomo fuerza gracias a la aparición de las tarjetas de sonido y estos a su vez se vieron en la necesidad de contar con estos dispositivos para poder representar los sonidos.

Actualmente podemos decir que un computador sin sonido no tiene vida, ya que para muchos es muy simple trabajar sin algo de música, verificar alguna enciclopedia que contenga audio y video o reproducir juegos y nada de esto tenga sonido. Antes era vanguardia, pero ahora es lo estándar y es considerado como una necesidad.

Debido l gran crecimiento en la industria de la música digital y electrónica como el MP3, las películas en DVD o videos digitales y los video juegos, algunas empresas han diseñado sistemas de sonido acordes a cada una de estas necesidades.

Tipos de sistemas de sonido

Parlantes sencillos o de escritorio: estos son los que normalmente encontramos en la mayoría de los computadores de casa u oficina, entre otros y muy sencillos. Algunos marcas de computadores incorporan los parlantes en el mismo diseño de las torres o desktop para mayor comodidad y ahorro de espacio.

Parlantes Cuadrafónicos: como su nombre lo indica son cuatro parlantes ubicados dos en la parte frontal y dos en la parte de atrás del usuario para obtener un sonido más amplio y nítido, en donde los sonidos son distribuidos de forma más eficaz hacia el oído.

Parlantes de sonido envolvente: realmente es aquí en donde no sabemos si estamos en dentro del lugar de donde proviene el sonido, como es el caso de las películas y los video juegos, ya que es tan impresionante que casi brincamos cuando se oye el sonido de explosiones entre otros. Lo que hace que este sistema de sonido sea tan impresionante y real, se debe gracias a una caja llamada normalmente Woofer o Bajo. Estos son un altavoz que emite bajas frecuencias y que en conjunto con los otros cuatro parlantes más uno que se encuentra en todo el frente, se logra este envolvimiento.

12. El teclado

El teclado es un componente al que se le da poca importancia, fundamentalmente en las computadoras clónicas (armadas). Aun así es un componente muy importante, ya que es el que permitirá nuestra relación con el PC, es más, junto con el mouse son los responsables de que podamos comunicarnos en forma fluida e inmediata con nuestra PC.

Existen varios tipos de teclados:

  • De membrana: son los más baratos, son algo imprecisos, de tacto blando, casi no hacen ruido al teclear.
  • Mecánicos: los más aceptables en calidad/precio, Más precisos, algo mas ruidosos que los anteriores.
  • Ergonómicos: generalmente están divididos en dos partes con diferente orientación, pero sólo es recomendable si va a usarlo mucho o si nunca ha usado una PC antes, ya que acostumbrarse a ellos es una tarea casi imposible.
  • Otros: podemos encontrar teclados para todos los gustos, desde teclados al que se les han añadido una serie de teclas o “ruedas” que facilitan el acceso a varias funciones, entre ellas, el volumen, el acceso a Internet, apagado de la PC, etc, etc. hasta los inalámbricos, etc.

Modelo del Teclado estandar de IBM

Para ver el gráfico seleccione la opción “Descargar” del menú superior

En cuanto al conector al que utilizan podemos encontrar una gran variedad, generalmente se utilizan los estándares DIN , y el mini-DIN . El primero es el clásico, aunque actualmente ya prácticamente se esta erradicando y reemplazando por el PS/2 (mini-din, habituales en placas ATX), sin embargo todavía se los puede ver en computadoras tipo AT armadas.

También existen conectores USB al igual que en el mouse, pero todavía con poco uso debido a su alto precio en los dos casos (teclado y mouse) y porque no todas las PC´s cuentan con este tipo de conector (aunque en la actualidad cada vez mas, y de a poco se va introduciendo este conector), de todas maneras no es una característica preocupante ya que no altera el rendimiento para nada.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

13. El ratón o Mouse

El ratón o mouse es un dispositivo que ayuda al usuario a navegar dentro de la interfaz gráfica del computador. Conectado a ésta por un cable, por lo general está acoplado de tal forma que se puede controlar el cursor en la pantalla, moviendo el ratón sobre una superficie plana en donde los ejes puedan rotar tanto a la derecha como a la izquierda.

Las diferentes tecnologías de ratones son:

Mecánico

Estos son dispositivos algo antiguos y funcionaban mediante contactos físicos eléctricos a modo de escobillas que en poco tiempo comenzaban a fallar y además de pesados, no eran precisos.

Opto-mecánico

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Este tipo de dispositivo es el más común. Al mover el ratón, se hace rodar una bola que hay en su interior. Esta rotación hace girar dos ejes, correspondientes a las dos dimensiones del movimiento. Cada eje mueve un disco con ranuras. De un lado de cada disco, un diodo emisor de luz (LED, acrónimo de Light-Emitting Diode) envía luz a través de las ranuras hacia un fototransistor de recepción situado al otro lado. A continuación, la secuencia de cambios de luz a oscuridad se traduce en una señal eléctrica, que indica la posición y la velocidad del ratón, que se ven reflejadas en el movimiento del cursor en la pantalla del computador.

Ratón optomecánico o Mouse optomecánico, en informática, tipo de mouse (ratón) en el que el movimiento se traduce en señales de dirección a través de una combinación de medios ópticos y mecánicos. La porción óptica incluye pares de diodos emisores de luz (LEDs, acrónimo de Light-Emitting Diodes) y sensores de búsqueda. La parte mecánica consiste en unas ruedas rotatorias dotadas de muescas, similares a las de los más tradicionales dispositivos mecánicos. Al mover el mouse, las ruedas giran y la luz de los LEDs pasa a través de las muescas activando un sensor de luz o queda bloqueada por los componentes sólidos de las ruedas. Los pares de sensores detectan estos cambios de luz y los interpretan como indicaciones de movimiento. Dado que los sensores están ligeramente desfasados entre sí, la dirección del movimiento se determina averiguando qué sensor ha sido el primero en volver a obtener el contacto luminoso. Al utilizar componentes ópticos en lugar de mecánicos, el mouse optomecánico elimina la necesidad de las numerosas reparaciones originadas por el desgaste y el mantenimiento propios de los mouse puramente mecánicos.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

TrackBalls

Estos son permiten mover el cursos usando los dedos que a la vez accionan una bola situada en la parte superior del dispositivo. El TrackBall no necesita una superficie plana para operar, ya que se trata de un elemento interesante en entornos reducidos y para computadores portatiles, claro está que también se usan mucho en trabajos de diseño, ya que permiten ser precisos.

Óptico

Estos son más avanzados y no tiene rueditas ni objetos extraños por debajo, solo tienen un dispositivo sensible a la luz que detecta la posición actual con respecto a la ubicación en la pantalla.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

14. El monitor

El monitor es un dispositivo periférico de salida y muy importante en la computadora, es la pantalla en la que se ve la información. Podemos encontrar básicamente dos tipos de monitores: uno es el CRT basado en un tubo de rayos catódicos como el de los televisores y el otro es el LCD, que es una pantalla plana de cristal líquido como la de las calculadoras, teléfonos celulares o agendas electrónicas. Los monitores son muy similares en cuanto a su forma física y posición de botones de control.

Los botones de opciones más comunes de un monitor son:

Para ver los gráficos seleccione la opción “Descargar” del menú superior

Tipos de Monitores

CRT

El CRT (Cathode Ray Tube – Tubo de Rayos Catódicos) es el tubo de imagen usado para crear imágenes en la mayoría de los monitores de sobremesa. En un CRT, un cañón de electrones dispara rayos de electrones a los puntos de fósforo coloreado en el interior de la superficie de la pantalla del monitor. Cuando los puntos de fósforo brillan, se produce una imagen.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

LCD
El LCD (Liquid Crystal Display – Pantalla Cristal Líquido) es una pantalla de alta tecnología, la tela de cristal liquido permite mayor calidad de imagen y un área visible mas amplia, o sea, para la transmisión de imagen, es usado un cristal liquido entre dos laminas de video y atribuyen a cada pixel un pequeño transistor, haciendo posible controlar cada uno de los puntos.

Son rápidas, presentan alto contraste y área visible mayor de lo que la imagen del monitor CTR convencional, además de consumir menos energía. Una de las características y diferencias principales con respecto a los monitores CTR es que no emiten en absoluto radiaciones electromagnéticas dañinas, por lo que la fatiga visual y los posibles problemas oculares se reducen.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Punto de Campos (Dot pitch)

Es la distancia diagonal en milímetros entre los puntos de fósforo del mismo color que recubren el interior de la pantalla del CRT. Un monitor con un punto de campo más pequeño produce una imagen más nítida. Generalmente el dot pitch de un monitor estándar es de 0,28 mm, pero en monitores profesionales puede llegar a 0,25, 0,24 o 0,21 mm.

La resolución

Se trata del número de puntos que puede representar el monitor por pantalla. Así, un monitor cuya resolución máxima sea de 1024×768 puntos puede representar hasta 768 líneas horizontales de 1024 puntos cada una, además de otras resoluciones inferiores, como 640×480 u 800×600.

Cuanto mayor sea la resolución de un monitor, mejor será la calidad de la imagen en pantalla, y mayor será la calidad del monitor. La resolución debe ser proporcional al tamaño del monitor, es normal que un monitor de 14″ ó 15″ no ofrezca 1280×1024 puntos, mientras que es el mínimo exigible a uno de 17″ o superior. La siguiente tabla ilustra este tema:

Tamaño del monitor Resolución máxima Resolución recomendada
14″ 1024×768 640×480
15″ 1024×768 800×600
17″ 1280×1024 1024×768
19″ 1600×1200 1152×864
21″ 1600×1200 1280×1024

15. La impresora

La impresora es un dispositivo periférico de salida que nos permite realizar impresiones en papel, para así tener respaldo de archivos y presentaciones. La impresión es muy importante cuando necesitamos realizar una carta, un proyecto o cualquier tipo de información, que a pesar de estar bien presentada digitalmente, en algún momento necesitaremos plasmar el resultado final en papel.

Las impresoras manejan un lenguaje llamado PLP, que permite a la computadora enviar información a la impresora acerca del contenido del trabajo. Hay dos tipos principales: Adobe PostScript y Hewlett-Packard Printer Control Language (PCL).

Además trabajan bajo puertos que permiten la comunicación entre la Impresora y el PC. EL puerto ECP está Incluido en el estándar 1284 del Instituto de Ingeniería Eléctrica y Electrónica, el ECP es un sistema que soporta comunicaciones bidireccionales entre la PC y la impresora, o el escáner. Tiene una tasa de transferencia mucho mayor que el estándar Centronics. Los demás periféricos pueden utilizar el puerto EPP (Enhaced Parallel Port – Puerto paralelo mejorado), en lugar del ECP.

Tipos de Impresoras

Impresoras de Matriz de Punto

Estas son de las más antiguas y son imprescindibles cuando se trata de imprimir sobre papel copia, o sea aquellas que tiene más de una hoja. Las oficinas comúnmente utilizan estas impresoras, ya que sirven para realizar impresiones en diferentes tipos de papel, pueden realizarse impresiones con papel separado o continuo. Es muy económica en cuanto al consumo de tinta, ya que trabajan con una cinta que se ajunta por detrás del cabezal impresor.

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Estas impresoras tienen una gran desventaja cuando se trata de realizar impresiones con múltiples colores, ya que solo permite utilizar un color Blanco (Papel) y Negro (Tinta), sin embargo algunas permiten insertar cintas de un solo color. Además no son para nada silenciosas.

El funcionamiento es sencillo, tiene un cabezal con una serie de agujas muy pequeñas que reciben los impulsos que hacen golpear dichas agujas sobre el papel y esta se desliza por un rodillo sólido. Los modelos más comunes son las de 9 y 24 agujas, haciendo referencia al número que de este componente se dota al cabezal, este parámetro también se utiliza para medir su calidad de impresión, lógicamente a mayor número de agujas, más nítida será la impresión.

En cuanto a su mantenimiento, se puede decir que son equipos muy resistentes y muy pocas veces presentan problemas de funcionamiento. Algunas veces se corre el rodillo o se sale la correa, pero no es nada complicado de acomodar manualmente.

Impresoras de Inyección de Tinta

Para ver el gráfico seleccione la opción “Descargar” del menú superior

Esta tiene en un cabezal tipo inyector, compuesto por una serie de boquillas que expulsan la tinta dependiendo de las instrucciones recibidas por el sistema. Hoy en día la necesidad de realizar impresiones a color más que un lujo es una necesidad y es muy común encontrar computadores en compañía de una impresora de inyección a tinta que es la más exitosa en el mercado debido a su costo, a pesar de que los cartuchos de tinta no son nada económicos.

Aquí el parámetro de calidad lo da la resolución de la imagen impresa, expresada en puntos por pulgada ( ppp ) o también lo podrán ver como dpi ( dot per inch ). Con 300 ppp basta para imprimir texto, para fotografías es recomendable al menos 600 ppp. Dada su relación calidad/precio, son las impresoras más utilizadas para trabajos hogareños y semi-profesionales.

Algunas de estas impresoras tienen cartuchos con una serie de cabezales y otros que solo tiene boquilla para expulsar la tinta, en este caso, las cabezas pegadas en la base donde se coloca el cartucho es quien inyecta la tinta.

Impresoras Láser

Estas impresoras son algo costosas en comparación con las demás y su mantenimiento en cuanto al cambio de tinta (Toner) y revisión técnica es costoso. Una ventaja es que estas impresoras imprimen al rededor de 1.500 paginas con muy buena calidad.

Su funcionamiento consiste de un láser que va dibujando la imagen electrostáticamente en un elemento llamado tambor que va girando hasta impregnarse de un polvo muy fino llamado tóner (como el de fotocopiadoras) que se le adhiere debido a la carga eléctrica. Por último, el tambor sigue girando y se encuentra con la hoja, en la cual imprime el tóner que formará la imagen definitiva.

Ciclo del procesamiento de la información (II).

Todo programa de cómputo deberá estar estructurado, siguiendo las 3 fases del ciclo del procesamiento de la información.Para concluir con el tema del ciclo del procesamiento computarizado de la información, a continuación se mencionaran, las actividades a realizar en cada una de sus fases:

1. En la fase de entrada incluiremos todas las instrucciones necesarias, para alimentar al programa, con los datos requeridos para ejecutar el proceso.

2. En la fase de proceso realizaremos todas las operaciones lógicas, aritméticas y de movimientos de información necesarias, para generar los resultados deseados.

3. En la fase de salida del programa, se le dará a conocer al usuario todos los resultados generados.

En el siguiente artículo trataremos el tema de los algoritmos.

Hardware

De Wikipedia, la enciclopedia libre
Artículo bueno

Hardware de la computadora

corresponde a todas las partes tangibles de una computadora: sus componentes eléctricos, electrónicos, electromecánicos y mecánicos;[1] sus cables, gabinetes o cajas, periféricos de todo tipo y cualquier otro elemento físico involucrado; contrariamente, el soporte lógico es intangible y es llamado software. El término es propio del idioma inglés (literalmente traducido: partes duras), su traducción al español no tiene un significado acorde, por tal motivo se la ha adoptado tal cual es y suena; la Real Academia Española lo define como «Conjunto de los componentes que integran la parte material de una computadora».[2] El término, aunque es lo más común, no solamente se aplica a una computadora tal como se la conoce, ya que, por ejemplo, un robot, un teléfono móvil, una cámara fotográfica o un reproductor multimedia también poseen hardware (y software).[3] [4]

El término hardware tampoco correspondería a un sinónimo exacto de «componentes informáticos», ya que esta última definición se suele limitar exclusivamente a las piezas y elementos internos, independientemente de los periféricos.

La historia del hardware del computador se puede clasificar en cuatro generaciones, cada una caracterizada por un cambio tecnológico de importancia. Este hardware se puede clasificar en: básico, el estrictamente necesario para el funcionamiento normal del equipo; y complementario, el que realiza funciones específicas.

Un sistema informático se compone de una unidad central de procesamiento (CPU), encargada de procesar los datos, uno o varios periféricos de entrada, los que permiten el ingreso de la información y uno o varios periféricos de salida, los que posibilitan dar salida (normalmente en forma visual o auditiva) a los datos procesados.

Microprocesador

El microprocesador es como el “cerebro” de la computadora. Es el encarga­do de realizar casi todas las operaciones y cálculos que permiten al equipo ejecutar las diversas tareas, en función del programa en ejecución. Es, por lo tanto, el dispositivo nú­cleo de la máquina, y el que define la veloci­dad, el poder de procesamiento y la genera­ción del sistema; así, un microprocesador de última generación suele ser más poderoso y veloz que los de generaciones anteriores.

Tarjeta madre

Así como un cerebro humano es inútil por sí solo, un microprocesador aislado no es más que un fragmento de silicio sin función al­guna. Para hacer su trabajo, este circuito re­quiere del soporte de diversos elementos pe­riféricos; precisamente, la tarjeta madre es el “puente” que lo “comunica” con todos ellos.

A su vez, en la tarjeta madre se integran diversos recursos que soportan el procesa­miento de datos y la comunicación con los dispositivos exteriores del sistema, por ejem­plo: los buses de comunicación entre el mi­croprocesador y la memoria RAM; las interfaces de conexión con los medios de al­macenamiento; los controladores de comu­nicación para las ranuras de expansión; la controladora para el manejo de gráficos en el monitor, etc.

En las primeras computadoras, la mayo­ría de los dispositivos para funciones específi­cas, tenían que ser agregados en forma ex­terna, vía las ranuras de expansión; sin em­bargo, gracias al avance en las técnicas de in­tegración de circuitos, se han incluido los periféricos básicos en el mismo diseño de las tarjetas madre; de ahí que se les considere como del tipo de “todo en uno”, pues inclu­yen controladora de video, controladora de sonido, circuitos de fax-rnódem y una con­troladora de red.

Es por ello que se ha simplificado consi­derablemente el ensamblado de sistemas PC, pues prácticamente basta con montar el microprocesador en la tarjeta madre, añadir la RAM y algunos elementos externos (como teclado, ratón y monitor), para obtener una computadora completa y funcional.

Memoria RAM

Para realizar las complejas operaciones informáticas, el microprocesador requiere de un constante flujo de datos de entrada (ins­trucciones y parámetros) y de salida (resul­tados obtenidos). La memoria RAM sirve de depósito temporal para los da­tos.

Existen varios tipos de memoria RAM, cada uno con ventajas y desventajas. Como regla general, mientras más memoria tenga un sistema, mejor desempeño ofrecerá; esto es especialmente cierto en ambientes de tra­bajo como Windows, que consume enormes cantidades de RAM.

Tarjeta de video

Los unos (1) y ceros (0) que envía el microprocesador, son convertidos por la tarjeta de video en la información que es desplegada por el monitor.

El poder de cómputo de muchas tarjetas de video modernas, es superior al de toda una máquina de hace unos 5 ó 6 años. Esto se debe a que poseen varias decenas de MB de RAM (para el almacenamiento temporal de la información de video), poderosos procesadores de señal, buses de muy alta velocidad, etc.

Por lo tanto, de la tarjeta de video incor­porada en el sistema depende la calidad de las imágenes obtenidas en el monitor, así como la velocidad de respuesta.

Dispositivos de almacenamiento de datos

Disco duro

Es el principal medio de almacenamiento de información en una computadora. Ahí se graban todos los archivos de sistema para que la máquina comience a trabajar, el sistema, operativo, los programas de aplicaciones, los archivos que el usuario va generando con su trabajo cotidiano, etc.

Normalmente, los usuarios prefieren discos con alta capacidad de almacenamiento Sobre todo por la “fiebre” de Internet en los últimos años, que permite descargar ingentes cantidades de información.

Unidades de disquete

Aunque los disquetes son ya casi obsoletos, su unidad se sigue incluyendo en la mayoría de computadoras modernas. Esto se debe a que todavía hay muchos usuarios que utili­zan el disquete como medio de transporte y almacenamiento de archivos, y a que ciertos tipos de diagnóstico del sistema (en el encendido) se siguen realizando mediante disquete.

En su momento, el disquete fue el prin­cipal medio de almacenamiento de informa­ción; pero con las crecientes necesidades de espacio informático y el desarrollo de los dis­cos duros y de las unidades grabadoras de discos compactos, quedó relegado a un pla­no secundario en el almacenamiento de archivos; e igualmente, con el desarrollo de las redes (incluida la Internet), su uso como me­dio de transporte de archivos prácticamente va desapareciendo.

Unidades de CD-ROM

Sin duda, los CD-ROM son en la actualidad el medio por excelencia de almacenamiento de información y distribución de programas; de ahí que los sistemas actuales no se conci­ban sin por lo menos una unidad de lectura. La amplia capacidad de estos discos (de hasta 700MB) y su bajo costo de producción, los hacen ideales para el alma­cenamiento de los enormes archivos que se necesitan para instalar las aplicaciones mo­dernas; por ejemplo, las últimas versiones de Windows requieren más de 400MB, cantidad que implicaría el uso de más de 300 disquetes de 3 1/2 pulgadas.

Los avances en la tecnología de grabación óptica, han dado lugar a la aparición de las unidades grabadoras de discos compactos, conocidas como “unidades CD-RW” o quemadores de discos CD-R. Recordemos que estos medios de almacenamiento, se ba­san en los mismos principios de la lectura de información por medio de un rayo láser, uti­lizada en los discos compactos de audio digital que fueron desarrollados en común por Philips y Sony.

Unidades de DVD

Las unidades de disco versátil digital (DVD), cada vez ocupan un sitio preponderante en los modernos sistemas. Los dis­cos en cuestión, también se basan en la tec­nología óptica de los tradicionales CD musi­cales; aunque un DVD sencillo, puede alma­cenar más de 4GB de datos, en tanto que un disco de doble cara y doble capa, puede al­macenar más de 17GB.

Por otra parte, también ya son comunes las unidades grabadoras de DVD, y es posi­ble que en los próximos años estos discos desplacen a los CD-R y CD-RW, aunque para ello antes debe definirse un estándar domi­nante, pues en la actualidad se utilizan va­rios protocolos, según el fabricante.

Dispositivos de entrada de datos

Teclado

Es el dispositivo para introducción de datos por excelencia; el principal medio de comu­nicación entre el usuario y la computadora. Por medio de este periférico, los usuarios suministran órdenes, información, instruccio­nes, etc..

En las primeras computadoras persona­les, mucho antes del estándar PC, no se utili­zaba el teclado tipo QWERTY que se utiliza en la actualidad, el cual es similar a una má­quina de escribir, aunque además de las te­clas alfabéticas, numéricas y de puntuación, se incluyen símbolos y teclas de control. Ade­más, su operación no es mecánica, sino que las teclas accionan sendos interruptores que transmiten cierto código a la unidad central, donde se interpreta y ejecuta la acción res­pectiva.

El código al que está asociado cada ca­rácter corresponde a un estándar conocido como código ASCII (se pronuncia «asqui»), por las siglas de American Standard Code for Information Interchange.

Ratón o mouse

Posiblemente usted ya ni conozca los siste­mas operativos que trabajaban en modo tex­to, como el MS-DOS y el DR-DOS; la lógica de comunicación de este software operativo, descansaba exclusivamente en instrucciones o comandos suministrados mediante el tecla­do. Pero con el uso de menús desplegables en ciertos programas de aplicación de ofici­na y el posterior advenimiento de los ambien­tes gráficos (Windows), el mouse o ratón se convirtió en un periférico indispensable en cualquier PC.

Este dispositivo permite apuntar, selec­cionar y manipular áreas de trabajo en la pan­talla para facilitar las operaciones informáticas del usuario, en vez de tener que escribir comandos de una sintaxis compleja. De hecho, hay actividades (como la ilustra­ción y el tratamiento de imágenes) que sim­plemente no se podrían efectuar sin el ratón.

Las interfaces gráficas, con sus respecti­vos elementos lógicos (menús, iconos, ven­tanas, barras de desplazamiento, botones, cuadros de diálogo, etc.) que ahora nos son tan familiares, tuvieron sus orígenes en los laboratorios de Xerox, hacia principios de los años 1970, pero la tecnología no estaba a pun­to para poder aprovechar este medio de co­municación hombre-máquina tan sofisticado. Fue en los años 80, con la primera Macintosh, que las interfaces gráficas y su correspondien­te dispositivo apuntador comenzarían a ser una realidad cotidiana.

Escáner

Con el advenimiento del diseño gráfico y la edición de documentos por computadora, surgieron diversos programas para la crea­ción y tratamiento de imágenes. Y como apo­yo a estos programas se desarrolló un equi­po complementario: el escáner (figura 1.9C).

El escáner es un lector o explorador ópti­co que convierte las imágenes en una repre­sentación digital de acuerdo a algún forma­to gráfico (JPG, GIF, TIF, entre los más utili­zados), quedando lista para ser directamen­te integrada en algún documento o para ser editada por el correspondiente software de tratamiento de imagen.

El principio de operación del escáner es el siguiente: al igual que una fotocopiadora, posee una fuente de luz interna que se en­carga de iluminar con potencia y uniformi­dad la imagen deseada; dispone también de una serie de fotoceldas que recuperan el re­flejo de luz y lo convierten en niveles de vol­taje, los cuales son transformados en secuen­cias de números binarios correspondiendo a la información que es procesada por la com­putadora.

Cámara digital

Como su nombre lo indica, esta cámara ya no utiliza película tradicional para la captu­ra de imágenes; utiliza tecnología electróni­ca para generar directamente un archivo digital, que puede transferirse sin problemas en la computadora.

El principio de operación de estos peri­féricos es muy similar al de un escáner, aun­que en este caso el dispositivo captor de imá­genes es una pastilla de un material fotosensible, conocido como CCD (dispositi­vo de carga acoplada), el cual convierte los impulsos luminosos en cargas eléctricas que, una vez procesadas, dan origen a un archivo binario (digital).

Existen cámaras para tomas fijas, que sir­ven para obtener fotografías comunes, y tam­bién minicámaras para secuencias de video, las cuales se utilizan para videoconferencias por Internet (las llamadas Webcam.

Dispositivo de salida de datos

Monitor y pantallas planas

Así como el teclado es el puente básico para la comunicación del usuario con la computadora, ésta, a su vez, despliega sus resulta­dos al usuario por medio del monitor.

El monitor lo único que hace es recibir la información que se envía desde la tarjeta madre y la convierte en puntos luminosos en la pantalla; así que, estrictamente hablando, la resolución de una imagen y su profundi­dad de colores tienen que ver más con los cir­cuitos de video y la memoria RAM adjudica­da al video, que con la calidad del monitor. Por eso los fabricantes de computadoras in­sisten tanto en el tipo de tarjeta de video (cir­cuitos, en realidad) incorporada en la tarjeta madre y en la cantidad de memoria RAM asociada.

Actualmente, existe una tendencia muy fuerte a sustituir los tradicionales monitores basados en tubos de rayos catódicos por pan­tallas planas tipo LCD (display de cristal lí­quido) o de plasma. Estas pantallas consu­men menos energía, ocupan un menor espa­cio, y sobretodo no distorsionan la imagen.

Impresoras

En los inicios de la computación personal, se utilizó un tipo de dispositivo similar al tele­tipo. Posteriormente se desarrollarían equi­pos de impresión propios para los sistemas de cómputo.

A la fecha, destacan tres tecnologías de impresoras: las de matriz de puntos (que no han desaparecido por com­pleto, porque aún tienen aplicaciones espe­cíficas donde no pueden ser reemplazadas), las de inyección de tinta (que son las más populares en este momento) y las de tecno­logía láser (que aunque ofrecen la mejor cali­dad y velocidad de impresión, son las más costosas).

Tarjeta de sonido y altavoces

Para que la computadora pueda generar so­nidos de calidad similar a un equipo de audio, requiere de un circuito especial que recoja los unos y ceros enviados por el microprocesador y los transforme en ondas so­noras. Esta es precisamente la función de la tarjeta de sonido y de las bocinas o altavoces.

En sentido estricto, esta tarjeta se cuenta entre los dispositivos mixtos porque posee una entrada para micrófono o señal externa, en cuyo caso la señal de audio es convertida en una señal digital que la máquina puede interpretar.

Como ya mencionamos, en los últimos años, se ha acentuado la tendencia a incor­porar la tarjeta de sonido en la estructura de la tarjeta madre. Así que de la elección de esta última, depende la calidad de la tarjeta de sonido.

Fax-módem

Para poder comunicarse con otros equipos re­motos, se creó el módem (contracción de “modulador-demodulador”). Es un disposi­tivo que transforma la información digital de la computadora en una señal que puede enviarse a través de la línea telefónica (analógica), y viceversa. Esta capacidad se aprovecha para establecer co­municación tipo fax mediante la PC, y para la conexión del equipo a la red mundial de Internet. Por tal motivo, el fax-módem es un elemento fundamental de cualquier PC mo­derna.

Tarjeta de red

Cada vez con mayor frecuencia, las oficinas y algunos hogares poseen varias máquinas que pueden estar intercomunicadas. Pero este intercambio de archivos no se realiza por medio de disquetes u otros medios removibles, sino mediante una configuración de red que requiere de una tarjeta o circuitos específicos diseñados para dicha función.

Gabinete y fuente de poder

En la operación y mantenimiento de la PC, intervienen dos elementos fundamentales cuyo papel se ha minimizado: el gabinete y la fuente de poder. En el primero, se alojan y protegen todos los componentes que proce­san y almacenan la información; en tanto, la fuente de poder recibe la energía de la línea de alimentación, para transformarla en los voltajes y corrientes que la máquina necesita para trabajar.

La memoria principal o RAM

Acrónimo de Random Access Memory, (Memoria de Acceso Aleatorio) es donde el ordenador guarda los datos que está utilizando en el momento presente. Se llama de acceso aleatorio porque el procesador accede a la información que está en la memoria en cualquier punto sin tener que acceder a la información anterior y posterior. Es la memoria que se actualiza constantemente mientras el ordenador está en uso y que pierde sus datos cuando el ordenador se apaga.

Cuando las aplicaciones se ejecutan, primeramente deben ser cargadas en memoria RAM. El procesador entonces efectúa accesos a dicha memoria para cargar instrucciones y enviar o recoger datos. Reducir el tiempo necesario para acceder a la memoria, ayuda a mejorar las prestaciones del sistema. La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o discos duros, es que la RAM es mucho más rápida, y se borra al apagar el ordenador.

Es una memoria dinámica, lo que indica la necesidad de “recordar” los datos a la memoria cada pequeños periodos de tiempo, para impedir que esta pierda la información. Eso se llama Refresco. Cuando se pierde la alimentación, la memoria pierde todos los datos. “Random Access“, acceso aleatorio, indica que cada posición de memoria puede ser leída o escrita en cualquier orden. Lo contrario seria el acceso secuencial, en el cual los datos tienen que ser leídos o escritos en un orden predeterminado.

Es preciso considerar que a cada BIT de la memoria le corresponde un pequeño condensador al que le aplicamos una pequeña carga eléctrica y que mantienen durante un tiempo en función de la constante de descarga. Generalmente el refresco de memoria se realiza cíclicamente y cuando esta trabajando el DMA. El refresco de la memoria en modo normal esta a cargo del controlador del canal que también cumple la función de optimizar el tiempo requerido para la operación del refresco. Posiblemente, en más de una ocasión en el ordenador aparecen errores de en la memoria debido a que las memorias que se están utilizando son de una velocidad inadecuada que se descargan antes de poder ser refrescadas.

Las posiciones de memoria están organizadas en filas y en columnas. Cuando se quiere acceder a la RAM se debe empezar especificando la fila, después la columna y por último se debe indicar si deseamos escribir o leer en esa posición. En ese momento la RAM coloca los datos de esa posición en la salida, si el acceso es de lectura o coge los datos y los almacena en la posición seleccionada, si el acceso es de escritura.

La cantidad de memoria Ram de nuestro sistema afecta notablemente a las prestaciones, fundamentalmente cuando se emplean sistemas operativos actuales. En general, y sobretodo cuando se ejecutan múltiples aplicaciones, puede que la demanda de memoria sea superior a la realmente existente, con lo que el sistema operativo fuerza al procesador a simular dicha memoria con el disco duro (memoria virtual). Una buena inversión para aumentar las prestaciones será por tanto poner la mayor cantidad de RAM posible, con lo que minimizaremos los accesos al disco duro.

Los sistemas avanzados emplean RAM entrelazada, que reduce los tiempos de acceso mediante la segmentación de la memoria del sistema en dos bancos coordinados. Durante una solicitud particular, un banco suministra la información al procesador, mientras que el otro prepara datos para el siguiente ciclo; en el siguiente acceso, se intercambian los papeles.

Los módulos habituales que se encuentran en el mercado, tienen unos tiempos de acceso de 60 y 70 ns (aquellos de tiempos superiores deben ser desechados por lentos). Es conveniente que todos los bancos de memoria estén constituidos por módulos con el mismo tiempo de acceso y a ser posible de 60 ns.

Hay que tener en cuenta que el bus de datos del procesador debe coincidir con el de la memoria, y en el caso de que no sea así, esta se organizará en bancos, habiendo de tener cada banco la cantidad necesaria de módulos hasta llegar al ancho buscado. Por tanto, el ordenador sólo trabaja con bancos completos, y éstos sólo pueden componerse de módulos del mismo tipo y capacidad. Como existen restricciones a la hora de colocar los módulos, hay que tener en cuenta que no siempre podemos alcanzar todas las configuraciones de memoria. Tenemos que rellenar siempre el banco primero y después el banco número dos, pero siempre rellenando los dos zócalos de cada banco (en el caso de que tengamos dos) con el mismo tipo de memoria. Combinando diferentes tamaños en cada banco podremos poner la cantidad de memoria que deseemos.

Tipos de memorias RAM

DRAM: acrónimo de “Dynamic Random Access Memory”, o simplemente RAM ya que es la original, y por tanto la más lenta.

Usada hasta la época del 386, su velocidad de refresco típica es de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, la más rápida es la de 70 ns. Físicamente, aparece en forma de DIMMs o de SIMMs, siendo estos últimos de 30 contactos.

FPM (Fast Page Mode): a veces llamada DRAM, puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia. Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns. Es lo que se da en llamar la RAM normal o estándar. Usada hasta con los primeros Pentium, físicamente aparece como SIMMs de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486).

Para acceder a este tipo de memoria se debe especificar la fila (página) y seguidamente la columna. Para los sucesivos accesos de la misma fila sólo es necesario especificar la columna, quedando la columna seleccionada desde el primer acceso. Esto hace que el tiempo de acceso en la misma fila (página) sea mucho más rápido. Era el tipo de memoria normal en los ordenadores 386, 486 y los primeros Pentium y llegó a alcanzar velocidades de hasta 60 ns. Se presentaba en módulos SIMM de 30 contactos (16 bits) para los 386 y 486 y en módulos de 72 contactos (32 bits) para las últimas placas 486 y las placas para Pentium.

EDO o EDO-RAM: Extended Data Output-RAM. Evoluciona de la FPM. Permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos). Mientras que la memoria tipo FPM sólo podía acceder a un solo byte (una instrucción o valor) de información de cada vez, la memoria EDO permite mover un bloque completo de memoria a la caché interna del procesador para un acceso más rápido por parte de éste. La estándar se encontraba con refrescos de 70, 60 ó 50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168.

La ventaja de la memoria EDO es que mantiene los datos en la salida hasta el siguiente acceso a memoria. Esto permite al procesador ocuparse de otras tareas sin tener que atender a la lenta memoria. Esto es, el procesador selecciona la posición de memoria, realiza otras tareas y cuando vuelva a consultar la DRAM los datos en la salida seguirán siendo válidos. Se presenta en módulos SIMM de 72 contactos (32 bits) y módulos DIMM de 168 contactos (64 bits).

SDRAM: Sincronic-RAM. Es un tipo síncrono de memoria, que, lógicamente, se sincroniza con el procesador, es decir, el procesador puede obtener información en cada ciclo de reloj, sin estados de espera, como en el caso de los tipos anteriores. Sólo se presenta en forma de DIMMs de 168 contactos; es la opción para ordenadores nuevos.

SDRAM funciona de manera totalmente diferente a FPM o EDO. DRAM, FPM y EDO transmiten los datos mediante señales de control, en la memoria SDRAM el acceso a los datos esta sincronizado con una señal de reloj externa.

La memoria EDO está pensada para funcionar a una velocidad máxima de BUS de 66 Mhz, llegando a alcanzar 75MHz y 83 MHz. Sin embargo, la memoria SDRAM puede aceptar velocidades de BUS de hasta 100 MHz, lo que dice mucho a favor de su estabilidad y ha llegado a alcanzar velocidades de 10 ns. Se presenta en módulos DIMM de 168 contactos (64 bits). El ser una memoria de 64 bits, implica que no es necesario instalar los módulos por parejas de módulos de igual tamaño, velocidad y marca

PC-100 DRAM: Este tipo de memoria, en principio con tecnología SDRAM, aunque también la habrá EDO. La especificación para esta memoria se basa sobre todo en el uso no sólo de chips de memoria de alta calidad, sino también en circuitos impresos de alta calidad de 6 o 8 capas, en vez de las habituales 4; en cuanto al circuito impreso este debe cumplir unas tolerancias mínimas de interferencia eléctrica; por último, los ciclos de memoria también deben cumplir unas especificaciones muy exigentes. De cara a evitar posibles confusiones, los módulos compatibles con este estándar deben estar identificados así: PC100-abc-def.

BEDO (burst Extended Data Output): Fue diseñada originalmente para soportar mayores velocidades de BUS. Al igual que la memoria SDRAM, esta memoria es capaz de transferir datos al procesador en cada ciclo de reloj, pero no de forma continuada, como la anterior, sino a ráfagas (bursts), reduciendo, aunque no suprimiendo totalmente, los tiempos de espera del procesador para escribir o leer datos de memoria.

RDRAM: (Direct Rambus DRAM). Es un tipo de memoria de 64 bits que puede producir ráfagas de 2ns y puede alcanzar tasas de transferencia de 533 MHz, con picos de 1,6 GB/s. Pronto podrá verse en el mercado y es posible que tu próximo equipo tenga instalado este tipo de memoria. Es el componente ideal para las tarjetas gráficas AGP, evitando los cuellos de botella en la transferencia entre la tarjeta gráfica y la memoria de sistema durante el acceso directo a memoria (DIME) para el almacenamiento de texturas gráficas. Hoy en día la podemos encontrar en las consolas NINTENDO 64.

DDR SDRAM: (Double Data Rate SDRAM o SDRAM-II). Funciona a velocidades de 83, 100 y 125MHz, pudiendo doblar estas velocidades en la transferencia de datos a memoria. En un futuro, esta velocidad puede incluso llegar a triplicarse o cuadriplicarse, con lo que se adaptaría a los nuevos procesadores. Este tipo de memoria tiene la ventaja de ser una extensión de la memoria SDRAM, con lo que facilita su implementación por la mayoría de los fabricantes.

SLDRAM: Funcionará a velocidades de 400MHz, alcanzando en modo doble 800MHz, con transferencias de 800MB/s, llegando a alcanzar 1,6GHz, 3,2GHz en modo doble, y hasta 4GB/s de transferencia. Se cree que puede ser la memoria a utilizar en los grandes servidores por la alta transferencia de datos.

ESDRAM: Este tipo de memoria funciona a 133MHz y alcanza transferencias de hasta 1,6 GB/s, pudiendo llegar a alcanzar en modo doble, con una velocidad de 150MHz hasta 3,2 GB/s.

La memoria FPM (Fast Page Mode) y la memoria EDO también se utilizan en tarjetas gráficas, pero existen además otros tipos de memoria DRAM, pero que SÓLO de utilizan en TARJETAS GRÁFICAS, y son los siguientes:

MDRAM (Multibank DRAM) Es increíblemente rápida, con transferencias de hasta 1 GIGA/s, pero su coste también es muy elevado.

SGRAM (Synchronous Graphic RAM) Ofrece las sorprendentes capacidades de la memoria SDRAM para las tarjetas gráficas. Es el tipo de memoria más popular en las nuevas tarjetas gráficas aceleradoras 3D.

VRAM Es como la memoria RAM normal, pero puede ser accedida al mismo tiempo por el monitor y por el procesador de la tarjeta gráfica, para suavizar la presentación gráfica en pantalla, es decir, se puede leer y escribir en ella al mismo tiempo.

WRAM (Window RAM) Permite leer y escribir información de la memoria al mismo tiempo, como en la VRAM, pero está optimizada para la presentación de un gran número de colores y para altas resoluciones de pantalla. Es un poco más económica que la anterior.

Para procesadores lentos, por ejemplo el 486, la memoria FPM era suficiente. Con procesadores más rápidos, como los Pentium de primera generación, se utilizaban memorias EDO. Con los últimos procesadores Pentium de segunda y tercera generación, la memoria SDRAM es la mejor solución.

La memoria más exigente es la PC100 (SDRAM a 100 MHz), necesaria para montar un AMD K6-2 o un Pentium a 350 MHz o más. Va a 100 MHz en vez de los 66 MHZ usuales.

La memoria ROM se caracteriza porque solamente puede ser leída (ROM=Read Only Memory). Alberga una información esencial para el funcionamiento del computador, que por lo tanto no puede ser modificada porque ello haría imposible la continuidad de ese funcionamiento.

Uno de los elementos más característicos de la memoria ROM, es el BIOS, (Basic Input-Output System = sistema básico de entrada y salida de datos) que contiene un sistema de programas mediante el cual el computador “arranca” o “inicializa”, y que están “escritos” en forma permanente en un circuito de los denominados CHIPS que forman parte de los componentes físicos del computador, llamados “hardware“.

Dispositivos de Almacenamiento Secundario

La memoria secundaria son todas las unidades de disco que en un computador puede tener, se usan para almacenar programas ejecutables y grandes volúmenes de datos que requieren ser acsesados en algún momento.

Los Floppy drives: Por mala y anticuada que sea una computadora, siempre dispone de al menos uno de estos aparatos. Su capacidad es totalmente insuficiente para las necesidades actuales, pero cuentan con la ventaja que les dan los muchos años que llevan como estándar absoluto para almacenamiento portátil.

¿Estándar? Bien, quizá no tanto. Desde aquel lejano 1981, el mundo del PC ha conocido casi diez tipos distintos de disquetes y de lectores para los mismos. Originariamente los disquetes eran flexibles y bastante grandes, unas 5,25 pulgadas de ancho. La capacidad primera de 160 Kb se reveló enseguida como insuficiente, por lo que empezó a crecer y no paró hasta los 1,44 MB, ya con los disquetes actuales, más pequeños (3,5″), más rígidos y protegidos por una pestaña metálica.

Incluso existe un modelo de 2,88 MB y 3,5″ que incorporaban algunas computadoras IBM, pero no llegó a cuajar porque los discos resultaban algo caros y seguían siendo demasiado escasos para aplicaciones un tanto serias; mucha gente opina que hasta los 100 MB de un Zip son insuficientes.

Las disqueteras son compatibles “hacia atrás”; es decir, que en una disquetera de 3,5″ de alta densidad (de 1,44 MB) podemos usar discos de 720 Kb o de 1,44 MB, pero en una de doble densidad, más antigua, sólo podemos usarlos de 720 Kb.

Unidades de disco Ls-120: es una unidad diseñada para la lectura y escritura en disquetes de 3 ½ pulgadas de gran capacidad de almacenamiento (120 MB) en especial para archivos y programas modernos mas amplios. La tecnología del LS -120 utiliza una interfase IDE que graba en pistas de alta densidad, las cuales son leídas por un rayo láser en cabezas de alta precisión.

Discos duros

Pertenecen a la llamada memoria secundaria o almacenamiento secundario. Al disco duro se le conoce con gran cantidad de denominaciones como disco duro, rígido (frente a los discos flexibles o por su fabricación a base de una capa rígida de aluminio), fijo (por su situación en la computadora de manera permanente), Winchester (por ser esta la primera marca de cabezas para disco duro). Estas denominaciones aunque son las habituales no son exactas ya que existen discos de iguales prestaciones pero son flexibles, o bien removibles o transportables.

Las capacidades de los discos duros varían desde 10 Mb. hasta varios GB. en minis y grandes computadoras. Para conectar un disco duro a una computadora es necesario disponer de una tarjeta controladora (o interfaz). La velocidad de acceso depende en gran parte de la tecnología del propio disco duro y de la tarjeta controladora asociada al discos duro.

Estos están compuestos por varios platos, es decir varios discos de material magnético montados sobre un eje central sobre el que se mueven. Para leer y escribir datos en estos platos se usan las cabezas de lectura/escritura que mediante un proceso electromagnético codifican / decodifican la información que han de leer o escribir. La cabeza de lectura/escritura en un disco duro está muy cerca de la superficie, de forma que casi vuela sobre ella, sobre el colchón de aire formado por su propio

Tipos de Memoria

ROM – RAM – CACHÉ y Memoria Virtual 
Memoria Rom o Convencional ( Read Only Memory ) 

memoria

Es una memoria solamente de lectura es totalmente inalterable sin esta memoria la maquina no arrancaría.

La memoria principal es la convencional que va de 0 a 640 kb. Cuando la máquina arranca comienza a trabajar el disco y realiza un testeo, para lo cual necesita memoria, esta memoria es la convencional (ROM) y está dentro del mother (en el bios). Apenas arranca utiliza 300 kb, sigue testeando y llega a mas o menos 540 kb donde se planta. A medida de que comenzaron a haber soft con más necesidad de memoria apareció la llamada memoria expandida que iba de 640 kb a 1024 kb. Una vez que se utilizaba toda la memoria convencional se utilizaba la expandida que utiliza la memoria RAM. A medida que pasa el tiempo los 1024 kb eran escasos y se creo la memoria extendida que va de 1024 kb a infinito que es la memoria RAM pura.

Los valores de memoria podemos observarlos en el setup de la máquina.

Memoria Ram o Memoria e acceso Aleatorio ( Random Acces Memory )

Esta memoria es como un escritorio al igual que los escritorios tienen cajones donde ordenan la información, cuanto mas grande sea el escritorio (plano de apoyo) mas cajones voy a tener de tal suerte que el micro va a perder menos tiempo en buscar y ordenar la información

La importancia de esta memoria es tan grande que si esta ausente la PC NO ARRANCA,

Actúa como si estuviera muerta no hay sonido ni cursor en la pantalla ni luces que se enciendan o apaguen.

Para que sirve:

Almacena las instrucciones que debe ejecutar el micro en cada momento

Este es el lugar físico donde debe trabajar el procesador cuando abrimos un programa sus instrucciones se copian automáticamente en la memoria, y cuando cerremos el programa todo se borrara ( volatizara )

La Ram es como un pizarrón donde se copian datos

También copia los trabajos que estamos haciendo en ese programa

En la Ram se copian programas que coordinan el funcionamiento de la Pc:

La primera parte de la Ram esta reservada para guardar las instrucciones de los dispositivos electrónicos. En este lugar no se puede guardar nada ya que lo utiliza el sistema para saber como manejar los dispositivos.

Zócalos de Memoria o Bancos de Memoria

Simm 30 Pines

Simm 72 Pines

Dimm Hasta 168 Pines

Los bancos pueden ser tres o cuatro y tienen una marca el el mother donde se debe colocar la primera memoria. Obviamente si en el primero tenemos una de 64 Mg y otra en el segundo decimos que tenemos 128 mg. La computadora funciona mejor con una sola de 128Mg. Esto es solo para las DIMM, las Simm se instalan de a pares

La memoria es como un peine con chip soldados en su superficie y depende de el numero de dientes y del banco al cual este conectado, el nombre con la cual se denomina:

Simm : Single in line Memory Module

Dimm: Double Memory Module

Rimm: Rambus in line Memory Module

Evaluacion de la Ram

Trabaja de la siguiente forma: los datos acceden en la Ram de forma aleatoria o se directamente desde la ubicación en que se encuentran sin necesidad de recorrer otras posiciones anteriores por Ej. Si tengo que recordar donde guarde el café que esta en la cocina, no tengo necesidad de recordar todo lo que hice durante el día para llegar hasta el café.

La Ram tampoco necesita recorrer recorre toda una secuencia de datos para dar con uno específicamente, simplemente lo busca donde corresponde en este sentido es mucho mas rapida que la Rom.

Capacidad de almacenamiento

Velocidad

Capacidad para manejo de datos

Diferentes tecnologías

La capacidad de almacenamiento se mide en Megabytes, un byte guarda una letra un megabayte puede guardar un millón de letras cuantos mas Mb tenga la memoria mejor.

Ojo anda mejor micro con poca velocidad y mucha memoria que uno con mucha y poca memoria. La cantidad mínima de memoria para Win 98 es de 32 Mb.

Velocidad: la velocidad de la Ram se mide en Mhz, antes se media en Nanos

( Millonésima parte de un segundo) a partir de 1995 las memorias comenzaron a trabajar al ritmo del el mother y se comenzó a medir la velocidad en Mhz.

Nanosegundos y Mhz

Las memorias traen inscriptos un sus chip un número seguido con un guión y otro número

Este ultimo es el que correspoende a los Nanos y hay que convertirlos en Mhz

Tabla Nanos y Mhz

17ns 60 Mhz 15ns 66Mhz

13ns 80 Mhz 10ns 100Mhz

8.3ns 120 Mhz 7.5ns 133Mhz

Capacidad de manejo de Datos: al igual que el micro las memorais también tiene un ancho ( Ancho de Memorias ), que se mide en Bits una memoria Dimm maneja 64 Bits y una Simm 32 Bits.

Diferentes Tecnologías 

Las memoria al igual que el resto de los componentes de la Pc, también tuvo su historia en su desarrollo tecnológico:

DRAM ( Dynamyc Random Acces Memory )

Este tipo de memoria se utilizan des los años 80 hasta ahora en toda las computadoras

Esta memoria tiene una desventaja hay que estimularla ( Refresco) permanentemente porque se olvida de todo.

Como se estimula : requiere un procesador que ordene el envió de cargas eléctricas, a este tipo de memorias se lo conoce como memoria estáticas

Otras de las desventajas de esta memoria es que es lenta y la ventaja es que es barata

Obviamente al tener estas desventajas se le incorporaron distintas tecnologías para mejorarlas.

FPM DRAM

La ventaja de este memoria consiste en pedir permiso una sola vez u llevarse varios datos consecutivos esto comenzó a usarse principios de os años noventa y dio buenos resultados a estos módulos se los denominaron SIMM FPM DRAM y pueden tener 30 o 72 pines y se la utiliza en las Pentium I lo que logro con esta tecnología es agilizar el proceso de lectura, estas memorias ya no se utilizan mas.

EDO DRAM 

Estas memorias aparecieron en el 95, y se hicieron muy populares ya que estaban presentes en todas las Pentium I MMX y tenia la posibilidad de localizar un dato mientras transfería otro de diferencia de las anteriores que mientras transfería un dato se bloqueaba.Estas EDO SIMM eran de 72 pines

SDRAM

Esta Memoria entro en el mercado en los años 97, y mejoro la velocidad siendo su ritmo de trabajo igual a la velocidad de Bus (FSB) es decir que tienen la acapacidad de trabajar a la misma velocidad de mother al que se conectan.

Es tos modulos de 168 Pines son conocidos como DIMM SDRAM PC 66 y 100, 133, obviamente si instalo una de 133, en un mother de 100 va a funcionar a 100Mhz.

DDR SDRAM

En este caso se consiguió que pudiera realizar dos transferencia en una pulsación o tic-tac de reloj, esta memoria pude alcanzar velocidades de 200 a 266Mhz, Tiene una ventaja mas trabaja en sincronía con el bus del mother si este acelera la memoria también pero tiene una desventaja son muy caras. Se conoce como DIMM DDR SDRAM PC 1600 Y PC 2100.

RDRAM

Es una memoria muy costosa y de compleja fabricación y la utilizan procesador Pentim IV para arriba corre a velocidades de 800 Mhz sus módulos se denominan Rimm de 141 pines y con un anho de 16 bits, para llenar un banco de memoria de 64 bits hay que instalar 4 memorias, es posible que estas memoria sean retiradas del mercado por ser tan costosas

MEMORIA VIRTUAL

Tenemos también lo que llamamos memoria virtual también llamada swapeo. Windows crea esta memoria virtual y ocupa espacio del disco para hacerlo. Si llega se a superar esta memoria virtual la capacidad del disco se cuelga la máquina, para lo cual lo único que nos resta es resetearla.

Si abrimos muchos programas nos vamos a dar cuenta que cuando llegamos a utilizar memoria virtual la máquina comienza a funcionar más lenta o a la velocidad que tiene nuestro disco disminuye, podemos seguir trabajando, pero nunca andara tan rápido como cuando trabaja con la memoria RAM o extendida. Por lo tanto para evitar esto lo mejor es colocar más memoria RAM de acuerdo a lo que diga el manual de mother.

MEMORIA CACHÉ o SRAM 

La memoria caché trabaja igual que la memoria virtual, tenemos caché en el procesador, en los discos y en el mother y nos guarda direcciones de memoria. Si ejecutamos un programa en principio, lo cerramos y luego los volvemos a ejecutar, la memoria caché nos guarda la ubicación (dirección) en el disco, cuando lo ejecuté, y lo que hicimos con el programa. Es mucho más rápida cuando ya usamos un programa

Existen 3 tipos de memoria caché:

Cache L1 

Esta dividido en dos bloques uno contiene las instrucciones y otro los datos y cuando se habla de su capacidad de almacenamiento se dice que es de 2×16 Kb .

El cache L1 se encuentra dentro del interior del procesador y funciona a la misma velocidad que el micro con capacidades que van desde 2×8 hasta 2x64Kb

Cache L2 interno y externo

La primeras memoria caché estaban ubicadas en el mother luego se construyeron en el procesador, pero no dentro del dado del procesador por lo que es mas lento que el caché L1, mientras que el externo lo encontramos el el mother.

La computadoras que tienen las tres tecnologías de caché van a ser mas rápidas.

Cache L3

Algunos micro soportan un nivel de caché mas el L3 que esta localizado en el mother

EL AMD 6k-3 soporta este caché.

TABLA

Nombre – Arquitectura – Pines – Capacidad – Velocidad

Edo Ram – Simm – 32 bits – 72 – 128Mb – 20 50Mhz

PC 66 SDRAM – Dimm – 64 bits – 168 256Mb – 66Mhz

PC 100/133 SDRAM – Dimm – 64 bits – 168 256Mb – 100/133Mhz

PC 600/700/800 – Rimm – 16 bits – 141 256Mb/ 1Gb – 800Mhz

PC 1600/2100 – Dimm – 64 bits – 184 – 256Mb – 200/266Mhz

                                      tipos y elementos del procesador El procesador (CPU, por Central Processing Unit o Unidad Central de Procesamiento), es por decirlo de alguna manera, el cerebro del ordenador. Permite el procesamiento de información numérica, es decir, información ingresada en formato binario, así como la ejecución de instrucciones almacenadas en la memoria.El primer microprocesador (Intel 4004) se inventó en 1971. Era un dispositivo de cálculo de 4 bits, con una velocidad de 108 kHz. Desde entonces, la potencia de los microprocesadores ha aumentado de manera exponencial. ¿Qué son exactamente esas pequeñas piezas de silicona que hacen funcionar un ordenador?Procesador Intel 4004

Funcionamiento

El procesador (denominado CPU, por Central Processing Unit) es un circuito electrónico que funciona a la velocidad de un reloj interno, gracias a un cristal de cuarzo que, sometido a una corriente eléctrica, envía pulsos, denominados “picos“. La velocidad de reloj (también denominada ciclo), corresponde al número de pulsos por segundo, expresados en Hertz (Hz). De este modo, un ordenador de 200 MHz posee un reloj que envía 200.000.000 pulsos por segundo. Por lo general, la frecuencia de reloj es un múltiplo de la frecuencia del sistema (FSBFront-Side Bus o Bus de la Parte Frontal), es decir, un múltiplo de la frecuencia de la placa madre.

Con cada pico de reloj, el procesador ejecuta una acción que corresponde a su vez a una instrucción o bien a una parte de ella. La medida CPI (Cycles Per Instruction o Ciclos por Instrucción) representa el número promedio de ciclos de reloj necesarios para que el microprocesador ejecute una instrucción. En consecuencia, la potencia del microprocesador puede caracterizarse por el número de instrucciones por segundo que es capaz de procesar. Los MIPS (millions of instructions per second o millones de instrucciones por segundo) son las unidades que se utilizan, y corresponden a la frecuencia del procesador dividida por el número de CPI.

Instrucciones

Una instrucción es una operación elemental que el procesador puede cumplir.. Las instrucciones se almacenan en la memoria principal, esperando ser tratadas por el procesador. Las instrucciones poseen dos campos:

  • el código de operación, que representa la acción que el procesador debe ejecutar;
  • el código operando, que define los parámetros de la acción. El código operando depende a su vez de la operación. Puede tratarse tanto de información como de una dirección de memoria.
Código de Operación Campo de Operación

El número de bits en una instrucción varía de acuerdo al tipo de información (entre 1 y 4 bytes de 8 bits).

Las instrucciones pueden agruparse en distintas categorías. A continuación presentamos algunas de las más importantes:

  • Acceso a Memoria: acceso a la memoria o transferencia de información entre registros.
  • Operaciones Aritméticas: operaciones tales como suma, resta, división o multiplicación.
  • Operaciones Lógicas: operaciones tales como Y, O, NO, NO EXCLUSIVO, etc.
  • Control: controles de secuencia, conexiones condicionales, etc.

Registros

Cuando el procesador ejecuta instrucciones, la información almacena en forma temporal en pequeñas ubicaciones de memoria local de 8, 16, 32 o 64 bits, denominadas registros. Dependiendo del tipo de procesador, el número total de registros puede variar de 10 a varios cientos.

Los registros más importantes son:

  • el registro acumulador (ACC), que almacena los resultados de las operaciones aritméticas y lógicas;
  • el registro de estado (PSWProcessor Estado: Word o Palabra de Estado del Procesador), que contiene los indicadores de estado del sistema (lleva dígitos, desbordamientos, etc.);
  • el registro de instrucción (RI), que contiene la instrucción que está siendo procesada actualmente;
  • el contador ordinal (OC o PC por Program Counter, Contador de Programa), que contiene la dirección de la siguiente instrucción a procesar;
  • el registro del búfer, que almacena información en forma temporal desde la memoria.

Memoria caché

La memoria caché (también memoria buffer) es una memoria rápida que permite reducir los tiempos de espera de las distintas informaciones almacenada en la RAM (Random Access Memory o Memoria de Acceso Aleatorio). En efecto, la memoria principal del ordenador es más lenta que la del procesador. Existen, sin embargo, tipos de memoria que son mucho más rápidos, pero que tienen un costo más elevado. La solución consiste entonces, en incluir este tipo de memoria local próxima al procesador y en almacenar en forma temporal la información principal que se procesará en él. Los últimos modelos de ordenadores poseen muchos niveles distintos de memoria caché:

  • La Memoria caché nivel 1 (denominada L1 Cache, por Level 1 Cache) se encuentra integrada directamente al procesador. Se subdivide en dos partes:
    • la primera parte es la caché de instrucción, que contiene instrucciones de la RAM que fueron decodificadas durante su paso por las canalizaciones.
    • la segunda parte es la caché de información, que contiene información de la RAM, así como información utilizada recientemente durante el funcionamiento del procesador.


El tiempo de espera para acceder a las memorias caché nivel 1 es muy breve; es similar al de los registros internos del procesador.

  • La memoria caché nivel 2 (denominada L2 Cache, por Level 2 Cache) se encuentra ubicada en la carcasa junto con el procesador (en el chip). La caché nivel 2 es un intermediario entre el procesador con su caché interna y la RAM. Se puede acceder más rápidamente que a la RAM, pero no tanto como a la caché nivel 1.
  • La memoria caché nivel 3 (denominada L3 Cache, por Level 3 Cache) se encuentra ubicada en la placa madre.


Todos estos niveles de caché reducen el tiempo de latencia de diversos tipos de memoria al procesar o transferir información. Mientras el procesador está en funcionamiento, el controlador de la caché nivel 1 puede interconectarse con el controlador de la caché nivel 2, con el fin de transferir información sin entorpecer el funcionamiento del procesador. También, la caché nivel 2 puede interconectarse con la RAM(caché nivel 3) para permitir la transferencia sin entorpecer el funcionamiento normal del procesador.

Señales de Control

Las señales de control son señales electrónicas que orquestan las diversas unidades del procesador que participan en la ejecución de una instrucción. Dichas señales se envían utilizando un elemento denominado secuenciador. Por ejemplo, la señal Leer/Escribir permite que la memoria se entere de que el procesador desea leer o escribir información.

Unidades Funcionales

El procesador se compone de un grupo de unidades interrelacionadas (o unidades de control). Aunque la arquitectura del microprocesador varía considerablemente de un diseño a otro, los elementos principales del microprocesador son los siguientes:

  • Una unidad de control que vincula la información entrante para luego decodificarla y enviarla a la unidad de ejecución:La unidad de control se compone de los siguientes elementos:
    • secuenciador (o unidad lógica y de supervisión ), que sincroniza la ejecución de la instrucción con la velocidad de reloj. También envía señales de control:
    • contador ordinal, que contiene la dirección de la instrucción que se está ejecutando actualmente;
    • registro de instrucción, que contiene la instrucción siguiente.
  • Una unidad de ejecución (o unidad de procesamiento), que cumple las tareas que le asigna la unidad de instrucción. La unidad de ejecución se compone de los siguientes elementos:
    • la unidad aritmética lógica (se escribe ALU); sirve para la ejecución de cálculos aritméticos básicos y funciones lógicas (Y, O, O EXCLUSIVO, etc.);
    • la unidad de punto flotante (se escribe FPU), que ejecuta cálculos complejos parciales que la unidad aritmética lógica no puede realizar;
    • el registro de estado;
    • el registro acumulador.
  • Una unidad de administración del bus (o unidad de entrada-salida) que administra el flujo de información entrante y saliente, y que se encuentra interconectado con el sistema RAM;

El siguiente diagrama suministra una representación simplificada de los elementos que componen el procesador (la distribución física de los elementos es diferente a la disposición):

Diagrama representativo del procesador

Transistor

Con el fin de procesar la información, el microprocesador posee un grupo de instrucciones, denominado “conjunto de instrucciones“, hecho posible gracias a los circuitos electrónicos. Más precisamente, el conjunto de instrucciones se realiza con la ayuda de semiconductores, pequeños “conmutadores de circuito” que utilizan el efecto transistor, descubierto en 1947 por John BardenWalter H. Brattain yWilliam Shockley, quienes recibieron por ello el premio Nobel en 1956.

Un transistor (contracción de los términos transferencia y resistor) es un componente electrónico semi-conductor que posee tres electrodos capaces de modificar la corriente que pasa a través suyo, utilizando uno de estos electrodos (denominado electrodo de control). Éstos reciben el nombre de “componentes activos”, en contraste a los “componentes pasivos”, tales como la resistencia o los capacitores, que sólo cuentan con dos electrodos (a los que se denomina “bipolares”).

El transistor MOS (metal, óxido, silicona) es el tipo de transistor más común utilizado en el diseño de circuitos integrados. Los transistores MOS poseen dos áreas con carga negativa, denominadas respectivamente fuente (con una carga casi nula), y drenaje (con una carga de 5V), separadas por una región con carga positiva, denominada sustrato. El sustrato posee un electrodo de control superpuesto, denominado puerta, que permite aplicar la carga al sustrato.

Transistor MOS

Cuando una tensión no se aplica en el electrodo de control, el sustrato con carga positiva actúa como barrera y evita el movimiento de electrones de la fuente al drenaje. Sin embargo, cuando se aplica la carga a la puerta, las cargas positivas del sustrato son repelidas y se realiza la apertura de un canal de comunicación con carga negativa entre la fuente y el drenaje.

Transistor MOS

El transistor actúa entonces como conmutador programable, gracias al electrodo de control. Cuando se aplica una carga al electrodo de control, éste actúa como interruptor cerrado, y cuando no hay carga, actúa como interruptor abierto.

Circuitos Integrados

Una vez combinados, los transistores pueden constituir circuitos lógicos que, al combinarse, forman procesadores. El primer circuito integrado data de 1958 y fue construido por Texas Instruments.

Los transistores MOS se componen, entonces, de láminas de silicona (denominadas obleas), obtenidas luego de múltiples procesos. Dichas láminas de silicona se cortan en elementos rectangulares para formar un “circuito“. Los circuitos se colocan luego en carcasas con conectores de entrada-salida, y la suma de esas partes compone un “circuito integrado“. La minuciosidad del grabado, expresado en micrones (micrómetros, se escribe µm) define el número de transistores por unidad de superficie. Puede haber millones de transistores en un sólo procesador.

La Ley de Moore, escrita en 1965 por Gordon E. Moore, cofundador de Intel, predijo que el rendimiento del procesador (por extensión del número de transistores integrados a la silicona) se duplicaría cada 12 meses. Esta ley se revisó en 1975, y se cambió el número de meses a 18. La Ley de Moore sigue vigente hasta nuestros días.

Dado que la carcasa rectangular contiene clavijas de entrada-salida que parecen patas, en Francia se utiliza el término “pulga electrónica” para referirse a los circuitos integrados.

Familias

Cada tipo de procesador posee su propio conjunto de instrucciones. Los procesadores se agrupan en las siguientes familias, de acuerdo con sus conjuntos de instrucciones exclusivos:

  • 80×86: la “x” representa la familia. Se hace mención a 386, 486, 586, 686, etc.
  • ARM
  • IA-64
  • MIPS
  • Motorola 6800
  • PowerPC
  • SPARC

Esto explica por qué un programa producido para un tipo específico de procesador sólo puede trabajar directamente en un sistema con otro tipo de procesador si se realiza lo que se denomina traducción de instrucciones, o emulación. El término “emulador” se utiliza para referirse al programa que realiza dicha traducción.

Conjunto de Instrucciones

Un conjunto de instrucciones es la suma de las operaciones básicas que puede cumplir un procesador. El conjunto de instrucciones de un procesador es un factor determinante en la arquitectura del éste, aunque una misma arquitectura puede llevar a diferentes implementaciones por diferentes fabricantes.

El procesador funciona de forma eficiente gracias a un número limitado de instrucciones, conectadas de forma permanente a los circuitos electrónicos. La mayoría de las operaciones se pueden realizar utilizando funciones básicas. Algunas arquitecturas, no obstante, sí incluyen funciones avanzadas de procesamiento.

Arquitectura CISC

La arquitectura CISC (Complex Instruction Set Computer, Ordenador de Conjunto de Instrucciones Complejas) se refiere a la conexión permanente del procesador con las instrucciones complejas, difíciles de crear a partir de las instrucciones de base.

La arquitectura CISC es especialmente popular en procesadores de tipo 80×86. Este tipo de arquitectura tiene un costo elevado a causa de las funciones avanzadas impresas en la silicona.

Las instrucciones son de longitud diversa, y a veces requieren más de un ciclo de reloj. Dado que los procesadores basados en la arquitectura CISC sólo pueden procesar una instrucción a la vez, el tiempo de procesamiento es una función del tamaño de la instrucción.

Arquitectura RISC

Los procesadores con tecnología RISC (Reduced Instruction Set Computer, Ordenador de Conjunto de Instrucciones Reducidas) no poseen funciones avanzadas conectadas en forma permanente.

Es por eso que los programas deben traducirse en instrucciones sencillas, lo cual complica el desarrollo o hace necesaria la utilización de un procesador más potente. Este tipo de arquitectura tiene un costo de producción reducido si se lo compara con los procesadores CISC. Además, las instrucciones de naturaleza sencilla se ejecutan en un sólo ciclo de reloj, lo cual acelera la ejecución del programa si se lo compara con los procesadores CISC. Para terminar, dichos procesadores pueden manejar múltiples instrucciones en forma simultánea, procesándolas en paralelo.

Mejoras Tecnológicas

A través del tiempo, los fabricantes de microprocesadores (denominados fundadores) han desarrollado un determinado número de mejoras que optimizan el rendimiento del procesador.

Procesamiento Paralelo

El procesamiento paralelo consiste en la ejecución simultánea de instrucciones desde el mismo programa pero en diferentes procesadores. Implica la división del programa en múltiples procesos manejados en paralelo a fin de reducir el tiempo de ejecución.

No obstante, este tipo de tecnología necesita sincronización y comunicación entre los diversos procesos, de manera similar a lo que puede llegar a ocurrir cuando se dividen las tareas en una empresa: se distribuye el trabajo en procesos discontinuos más pequeños que son manejados por diversos departamentos. El funcionamiento de una empresa puede verse afectado en gran medida si la comunicación entre los distintos servicios internos no funciona de manera correcta.

Canalización

Se denomina canalización a la tecnología destinada a mejorar la velocidad de ejecución de instrucciones mediante la colocación de las diversas etapas en paralelo.

A fin de comprender el mecanismo de canalización, es necesario primero comprender las etapas de ejecución de una instrucción. Las etapas de ejecución de una instrucción correspondientes a un procesador con canalización “clásica” de 5 pasos son las siguientes:

  • RECUPERACIÓN: (recupera la instrucción de la caché;
  • DECODIFICACIÓNdecodifica la instrucción y busca operandos (valores de registro o inmediatos);
  • EJECUCIÓNejecuta la instrucción (por ejemplo, si se trata de una instrucción ADD, se realiza una suma, si es una instrucción SUB, se realiza una resta, etc.);
  • MEMORIAaccede a la memoria, y escribe o recupera información desde allí;
  • POST ESCRITURA (retirar)registra el valor calculado en un registro.

Las instrucciones se organizan en líneas en la memoria y se cargan una tras otra.

Gracias a la canalización, el procesamiento de instrucciones no requiere más que los cinco pasos anteriores. Dado que el orden de los pasos es invariable (RECUPERACIÓN, DECODIFICACIÓN, EJECUCIÓN, MEMORIA, POST ESCRITURA), es posible crear circuitos especializados para cada uno de éstos en el procesador.

El objetivo de la canalización es ejecutar cada paso en paralelo con los pasos anteriores y los siguientes, lo que implica leer la instrucción (RECUPERACIÓN) mientras se lee el paso anterior (DECODIFICACIÓN), al momento en que el paso anterior está siendo ejecutado (EJECUCIÓN) al mismo tiempo que el paso anterior se está escribiendo en la memoria (MEMORIA), y que el primer paso de la serie se registra en un registro (POST ESCRITURA).

Canalización de 5 pasos

En general, deben planificarse 1 o 2 ciclos de reloj (rara vez más) para cada paso de canalización, o un máximo de 10 ciclos de reloj por instrucción. Para dos instrucciones, se necesita un máximo de 12 ciclos de reloj (10+2=12 en lugar de 10*2=20), dado que la instrucción anterior ya se encontraba en la canalización. Ambas instrucciones se procesan simultáneamente, aunque con una demora de 1 o 2 ciclos de reloj. Para 3 instrucciones, se necesitan 14 ciclos de reloj, etc.

El principio de la canalización puede compararse a una línea de ensamblaje automotriz. El auto se mueve de una estación de trabajo a la otra a lo largo de la línea de ensamblaje y para cuando sale de la fábrica, está completamente terminado. A fin de comprender bien el principio, debe visualizarse la línea de ensamblaje como un todo, y no vehículo por vehículo. Se necesitan tres horas para producir cada vehículo, pero en realidad se produce uno por minuto.

Debe notarse que existen muchos tipos diferentes de canalizaciones, con cantidades que varían entre 2 y 40 pasos, pero el principio siempre es el mismo.

Superscaling

La tecnología Superscaling consiste en ubicar múltiples unidades de procesamiento en paralelo con el fin de procesar múltiples instrucciones por ciclo.

HyperThreading

La tecnología HyperThreading (se escribe HT) consiste en ubicar dos procesadores lógicos junto con un procesador físico. El sistema reconoce así dos procesadores físicos y se comporta como un sistema multitareas, enviando de esta manera, dos subprocesos simultáneos denominados SMT (Simultaneous Multi Threading, Multiprocesamiento Simultáneo). Este “engaño”, por decirlo de alguna manera, permite emplear mejor los recursos del procesador, garantizando el envío masivo de información al éste.

Placa base

El primer componente de un ordenador es la placa madre (también denominada “placa base“). La placa madre es el concentrador que se utiliza para conectar todos los componentes esenciales del ordenador.

Placa madre

Como su nombre lo indica, la placa madre funciona como una placa “materna”, que toma la forma de un gran circuito impreso con conectores para tarjetas de expansión, módulos de memoria, el procesador, etc.

Características

Existen muchas maneras de describir una placa madre, en especial las siguientes:

Factor de forma de la placa madre

El término factor de forma (en inglés <em>form factor</em>) normalmente se utiliza para hacer referencia a la geometría, las dimensiones, la disposición y los requisitos eléctricos de la placa madre. Para fabricar placas madres que se puedan utilizar en diferentes carcasas de marcas diversas, se han desarrollado algunos estándares:

  • AT miniatura/AT tamaño completo es un formato que utilizaban los primeros ordenadores con procesadores 386 y 486. Este formato fue reemplazado por el formato ATX, cuya forma favorecía una mejor circulación de aire y facilitaba a la vez el acceso a los componentes.
  • ATX: El formato ATX es una actualización del AT miniatura. Estaba diseñado para mejorar la facilidad de uso. La unidad de conexión de las placas madre ATX está diseñada para facilitar la conexión de periféricos (por ejemplo, los conectores IDE están ubicados cerca de los discos). De esta manera, los componentes de la placa madre están dispuestos en paralelo. Esta disposición garantiza una mejor refrigeración.
    • ATX estándar: Tradicionalmente, el formato del estándar ATX es de 305 x 244 mm. Incluye un conector AGP y 6 conectores PCI.
    • micro-ATX: El formato microATX resulta una actualización de ATX, que posee las mismas ventajas en un formato más pequeño (244 x 244 mm), a un menor costo. El Micro-ATX incluye un conector AGP y 3 conectores PCI.
    • Flex-ATX: FlexATX es una expansión del microATX, que ofrece a su vez una mayor flexibilidad para los fabricantes a la hora de diseñar sus ordenadores. Incluye un conector AGP y 2 conectores PCI.
    • mini-ATX: El miniATX surge como una alternativa compacta al formato microATX (284 x 208 mm) e incluye a su vez, un conector AGP y 4 conectoresPCI en lugar de los 3 del microATX. Fue diseñado principalmente para mini-PC (ordenadores barebone).
  • BTX: El formato BTX (Tecnología Balanceada Extendida), respaldado por la marca Intel, es un formato diseñado para mejorar tanto la disposición de componentes como la circulación de aire, la acústica y la disipación del calor. Los distintos conectores (ranuras de memoria, ranuras de expansión) se hallan distribuidos en paralelo, en el sentido de la circulación del aire. De esta manera, el microprocesador está ubicado al final de la carcasa, cerca de la entrada de aeración, donde el aire resulta más fresco. El cable de alimentación del BTX es el mismo que el de la fuente de alimentación del ATX. El estándar BTX define tres formatos:
    • BTX estándar, con dimensiones estándar de 325 x 267 mm;
    • micro-BTX, con dimensiones reducidas (264 x 267 mm);
    • pico-BTX, con dimensiones extremadamente reducidas (203 x 267 mm).
  • ITX: el formato ITX (Tecnología de Información Extendida), respaldado por Via, es un formato muy compacto diseñado para configuraciones en miniatura como lo son las mini-PC. Existen dos tipos de formatos ITX principales:
    • mini-ITX, con dimensiones pequeñas (170 x 170 mm) y una ranura PCI;
    • nano-ITX, con dimensiones muy pequeñas (120 x 120 mm) y una ranura miniPCI. Por esta razón, la elección de la placa madre y su factor de forma dependen de la elección de la carcasa. La tabla que se muestra a continuación resume las características de los distintos factores de forma.
Factor de forma Dimensiones Ranuras
ATX 305 x 244 mm AGP/6 PCI
microATX 305 x 244 mm AGP/3 PCI
FlexATX 229 x 191 mm AGP/2 PCI
Mini ATX 284 x 208 mm AGP/4 PCI
Mini ITX 170 x 244 mm 1 PCI
Nano ITX 120 x 244 mm 1 MiniPCI
BTX 325 x 267 mm 7
microBTX 264 x 267 mm 4
picoBTX 203 x 267 mm 1

Componentes integrados

La placa madre contiene un cierto número de componentes integrados, lo que significa a su vez que éstos se hallan integrados a su circuito impreso:

  • el chipset, un circuito que controla la mayoría de los recursos (incluso la interfaz de bus con el procesador, la memoria oculta y la memoria de acceso aleatorio, las tarjetas de expansión, etc.),
  • el reloj y la pila CMOS,
  • el BIOS,
  • el bus del sistema y el bus de expansión.

De esta manera, las placas madre recientes incluyen, por lo general, numerosos dispositivos multimedia y de red integrados que pueden ser desactivados si es necesario:

  • tarjeta de red integrada;
  • tarjeta gráfica integrada;
  • tarjeta de sonido integrada;
  • controladores de discos duros actualizados.

El chipset

El chipset es un circuito electrónico cuya función consiste en coordinar la transferencia de datos entre los distintos componentes del ordenador (incluso el procesador y la memoria). Teniendo en cuenta que el chipset está integrado a la placa madre, resulta de suma importancia elegir una placa madre que incluya un chipset reciente para maximizar la capacidad de actualización del ordenador.

Algunos chipsets pueden incluir un chip de gráficos o de audio, lo que significa que no es necesario instalar una tarjeta gráfica o de sonido. Sin embargo, en algunos casos se recomienda desactivarlas (cuando esto sea posible) en la configuración del BIOS e instalar tarjetas de expansión de alta calidad en las ranuras apropiadas.

El reloj y la pila CMOS

El reloj en tiempo real (o RTC) es un circuito cuya función es la de sincronizar las señales del sistema. Está constituido por un cristal que, cuando vibra, emite pulsos (denominados pulsos de temporizador) para mantener los elementos del sistema funcionando al mismo tiempo. La frecuencia del temporizador(expresada en MHz) no es más que el número de veces que el cristal vibra por segundo, es decir, el número de pulsos de temporizador por segundo. Cuanto más alta sea la frecuencia, mayor será la cantidad de información que el sistema pueda procesar.

Cuando se apaga el ordenador, la fuente de alimentación deja inmediatamente de proporcionar electricidad a la placa madre. Al encender nuevamente el ordenador, el sistema continúa en hora. Un circuito electrónico denominado CMOS (Semiconductor de óxido metálico complementario), también llamado BIOS CMOS, conserva algunos datos del sistema, como la hora, la fecha del sistema y algunas configuraciones esenciales del sistema.

El CMOS se alimenta de manera continua gracias a una pila (pila tipo botón) o bien a una pila ubicada en la placa madre. La información sobre el hardware en el ordenador (como el número de pistas o sectores en cada disco duro) se almacena directamente en el CMOS. Como el CMOS es un tipo de almacenamiento lento, en algunos casos, ciertos sistemas suelen proceder al copiado del contenido del CMOS en la memoria RAM (almacenamiento rápido); el término “memoria shadow” se utiliza para describir este proceso de copiado de información en la memoria RAM.

El “semiconductor de óxido metálico complementario” es una tecnología de fabricación de transistores, la última de una extensa lista que incluye a su vez la TTL (lógica transistor-transistor), el TTLS (lógica transistor-transistor Schottky) (más rápido) o el NMOS (Semiconductor de óxido metálico de canal negativo) y el PMOS (Semiconductor de óxido metálico de canal positivo).

El CMOS permite la ejecución de numerosos canales complementarios en un solo chip. A diferencia de TTL o TTLS, el CMOS es mucho más lento, pero reduce notoriamente el consumo de energía; esta es la razón por la que se utiliza como reloj de ordenadores alimentados a pilas. A veces, el término CMOS se utiliza erróneamente para hacer referencia a los relojes de ordenadores.

Cuando la hora del ordenador se reinicia de manera continua o si el reloj se atrasa, generalmente sólo debe cambiarse la pila.

El BIOS

El BIOS (Sistema básico de entrada y salida) es el programa que se utiliza como interfaz entre el sistema operativo y la placa madre. El BIOS puede almacenarse en la memoria ROM (de sólo lectura, que se puede escribir únicamente) y utiliza los datos almacenados en el CMOS para buscar la configuración del hardware del sistema.

El BIOS se puede configurar por medio de una interfaz (llamada Configuración del BIOS), a la que se accede al iniciarse el ordenador presionando una tecla (por lo general, la tecla Supr. En realidad, la configuración del BIOS se utiliza sólo como interfaz para configuración; los datos se almacenan en elCMOS. Para obtener más información, se aconseja consultar el manual de su placa madre).

Socket del procesador

El procesador (también denominado microprocesador) no es más que el cerebro del ordenador. Ejecuta programas a partir de un conjunto de instrucciones. El procesador se caracteriza por su frecuencia, es decir la velocidad con la cual ejecuta las distintas instrucciones. Esto significa que un procesador de 800 MHz puede realizar 800 millones de operaciones por segundo.

La placa madre posee una ranura (a veces tiene varias en las placas madre de multiprocesadores) en la cual se inserta el procesador y que se denomina socket del procesador o ranura.

  • Ranura: Se trata de un conector rectangular en el que se inserta un procesador de manera vertical.
  • Socket: Además de resultar un término general, también se refiere más específicamente a un conector cuadrado con muchos conectores pequeños en los que se inserta directamente el procesador.

Dentro de estos dos grandes grupos, se utilizan diferentes versiones, según del tipo de procesador. Más allá del tipo de socket o ranura que se utilice, es esencial que el procesador se inerte con suavidad para que no se doble ninguna clavija (existen cientos de ellas). Para insertarlos con mayor facilidad, se ha creado un concepto llamado ZIF (Fuerza de inserción nula). Los sockets ZIF poseen una pequeña palanca que, cuando se levanta, permite insertar el procesador sin aplicar presión. Al bajarse, ésta mantiene el procesador en su lugar.

Por lo general, el procesador posee algún tipo de dispositivo infalible con la forma de una esquina con muescas o marcas coloridas, que deben ser alineadas con las marcas respectivas del socket.

Ventiladores y radiadores

Dado que el procesador emite calor, se hace necesario disiparlo afín de evitar que los circuitos se derritan. Esta es la razón por la que generalmente se monta sobre un disipador térmico (también llamado ventilador o radiador), hecho de un metal conductor del calor (cobre o aluminio) a fin de ampliar la superficie de transferencia de temperatura del procesador. El disipador térmico incluye una base en contacto con el procesador y aletas para aumentar la superficie de transferencia de calor. Por lo general, el enfriador está acompañado de un ventilador para mejorar la circulación de aire y la transferencia de calor. La unidad también incluye un ventilador que expulsa el aire caliente de la carcasa, dejando entrar el aire fresco del exterior.

Conectores de la RAM

La RAM (Memoria de acceso aleatorio) se utiliza para almacenar datos mientras se ejecuta el ordenador; sin embargo, los contenidos se eliminan al apagarse o reiniciarse el ordenador, a diferencia de los dispositivos de almacenamiento masivo como los discos duros, que mantienen la información de manera segura, incluso cuando el ordenador se encuentra apagado. Esta es la razón por la que la memoria RAM se conoce como “volátil”.

Entonces, ¿por qué debería uno utilizar la RAM, cuando los discos duros cuestan menos y posen una capacidad de almacenamiento similar? La respuesta es que la RAM es extremadamente rápida a comparación de los dispositivos de almacenamiento masivo como los discos duros. Tiene un tiempo de respuesta de alrededor de unas docenas de nanosegundos (cerca de 70 por DRAM, 60 por EDO RAM y 10 por SDRAM; sólo 6 ns por DDR SDRAM) a diferencia de unos pocos milisegundos en los discos duros.

La memoria RAM se presenta en forma de módulos que se conectan en los conectores de la placa madre.

Ranuras de expansión

Las Ranuras de expansión son compartimientos en los que se puede insertar tarjetas de expansión. Éstas son tarjetas que ofrecen nuevas capacidades o mejoras en el rendimiento del ordenador. Existen varios tipos de ranuras:

  • Ranuras ISA (Arquitectura estándar industrial): permiten insertar ranuras ISA. Las más lentas las de 16 bits.
  • Ranuras VLB (Bus Local Vesa): este bus se utilizaba para instalar tarjetas gráficas.
  • Ranuras PCI (Interconexión de componentes periféricos): se utilizan para conectar tarjetas PCI, que son mucho más rápidas que las tarjetas ISA y se ejecutan a 32 bits.
  • Ranura AGP (Puerto gráfico acelerado): es un puerto rápido para tarjetas gráficas.
  • Ranuras PCI Express (Interconexión de componentes periféricos rápida): es una arquitectura de bus más rápida que los buses AGP y PCI.
  • Ranura AMR (Elevador de audio/módem): este tipo de ranuras se utiliza para conectar tarjetas miniatura construidas para PC.

Tarjeta PCI

Los conectores de entrada y salida.

La placa madre contiene un cierto número de conectores de entrada/salida reagrupados en el panel trasero.

Conectores en el panel trasero

La mayoría de las placas madre tienen los siguientes conectores:

  • Un puerto serial que permite conectar periféricos antiguos;
  • Un puerto paralelo para conectar impresoras antiguas;
  • Puertos USB (1.1 de baja velocidad o 2.0 de alta velocidad) que permiten conectar periféricos más recientes;
  • Conector RJ45 (denominado LAN o puerto Ethernet) que permiten conectar el ordenador a una red. Corresponde a una tarjeta de red integrada a la placa madre;
  • Conector VGA (denominado SUB-D15) que permiten conectar el monitor. Este conector interactúa con la tarjeta gráfica integrad
  • Conectores de audio (línea de entradalínea de salida y micrófono), que permiten conectar altavoces, o bien un sistema de sonido de alta fidelidad o un micrófono. Este conector interactúa con la tarjeta de sonido integrada.

Periféricos

1. Periféricos de almacenamiento

Los periféricos de almacenamiento, llamados también periféricos de memoria auxiliar, son unos dispositivos en los que se almacenan, temporal o permanente, los datos que va a manejar la CPU durante el proceso en curso, y que no es posible mantener en la memoria principal. Suponen un apoyo fundamental a la computadora para realizar su trabajo habitual.

Los periféricos de almacenamiento se pueden clasificar de acuerdo al modo de acceso a los datos que contienen:

• Acceso secuencial.

• Acceso aleatorio.

— Acceso secuencial.

En el acceso secuencial, el elemento de lectura del dispositivo debe pasar por el espacio ocupado por la totalidad de los datos almacenados previamente al espacio ocupado físicamente por los datos almacenados que componen el conjunto de información a la que se desea acceder.

— Acceso aleatorio.

En el modo de acceso aleatorio, el elemento de lectura accede directamente a la dirección donde se encuentra almacenada físicamente la información que se desea localizar sin tener que pasar previamente por la almacenada entre el principio de la superficie de grabación y el punto donde se almacena la información buscada.

Es evidente la reducción de tiempo que presenta el acceso aleatorio frente al secuencial, pero la utilización de la tecnología de acceso secuencial se debió a que la implementación de las cintas magnéticas fue muy anterior a la puesta en marcha operativa del primer periférico de acceso aleatorio.

En la actualidad, las cintas magnéticas tradicionales se están relegando poco a poco a simples soportes de almacenamiento de datos históricos delsistema informático o de procesos periódicos de copias de seguridad.

2. Medios magnéticos

Disco rígido

Existen dos tipos principales de discos duros:

• Fijos.

• Removibles.

1. Discos fijos.

Los discos fijos se fabrican dentro de una carcasa sellada de la que no se pueden extraer.

El montaje de los componentes internos del disco se realiza en la fábrica con unas condiciones muy estrictas de limpieza y aislamiento para evitar la entrada de polvo que pudieran deteriorarlo. Por ello nunca debe abrirse la carcasa de protección de un disco duro excepto por personal técnico en las condiciones adecuadas.

Los discos duros fijos más comunes utilizan tecnología Winchester.

2. Discos removibles.

Los discos removibles están montados en un contenedor, también sellado, que les permite entrar y salir de unos habitáculos especiales. Estos habitáculos están situados en la carcasa de la computadora o bien conectados a ésta por medio de un cable interfaz.

Material soporte:

Están fabricados con una aleación de aluminio con un recubrimiento magnético, se están investigando materiales sintéticos compuestos para reducir el rozamiento para que haya un tiempo de acceso mas reducido

Motor de accionamiento de eje:

Se encarga de imprimir la velocidad necesaria al eje con los discos, que suele ser de un 3.600 r.p.m. El motor esta alimentado por corriente directa gracias a un pequeño generador que lleva incorporado. Permitiendo, de este modo determinar la precisión de velocidad de rotación.

Cabezal de lectura-escritura:

Esta compuesta de varios cabezales unidos entre sí, tanto física como eléctrica y electrónicamente. Esta unidad es mucho más frágil que la de lasdisqueteras, ya que las cabezas vuelan sobre la superficie del disco, es decir, se encuentra a una distancia de varias micras del disco sin llegar a tocarlo. El campo magnético que se crea entre las superficies metálicas del disco y los cabezales es lo suficientemente amplio como para poder leer o escribir sobre ellos, pero a unas velocidades mucho mayores que en los discos flexibles, ya que prácticamente no existe rozamiento alguno.

Motor de impulsos:

Es un motor eléctrico de gran precisión. Su misión es mover la cabeza de lectura-escritura a través de la superficie de los discos metálicos en sentido radial para situarse en el sector y cilindro adecuado. Todo el conjunto de cabezales y discos viene envuelto en una caja sellada herméticamente, para impedir que las partículas de polvo y suciedad existentes en el ambiente se depositen sobre la cabeza de lectura-escritura, causando luego la aparición de errores tanto en la obtención de datos como en su grabación, llegando incluso a perderse toda la información contenida en él.

*Circuito impreso controlador:

Situado en la parte inferior del conjunto de disco duro. Contiene los dispositivos electrónicos que controlan: la velocidad de giro, la posición de la cabeza de lectura-escritura y la activación de obtención o grabación de datos. Este circuito consta, en un principio, de tres conectores: Dos planos de pistas doradas y uno blanco con cuatro patillas AMP hembra. Los primeros se utilizan para comunicarse el disco duro con su tarjeta controladora que esta unida a la CPU, mediante otro conector plano.

El otro conector es el que alimenta a la unidad de disco y la une con la fuente de alimentación del ordenador. Este consta de cuatro patillas, en las que destaca la masa y los voltajes de +5 y +12 voltios.

Circuito impreso controlador

Todos estos componentes van protegidos por una carcasa de aleación que mantiene a todos estos alineados con toda precisión, esta carcasa es la que dota al disco duro de su peso y robustez.

3. Características

La diferencia mas clara entre un disquete y un disco duro es la gran capacidad de almacenamiento de este ultimo.

Esto hace que haya que tratar de forma diferente a los discos duros de los flexibles.

Los discos duros presentan un problema especial que, por otra parte, tiene solución. Al estar en el interior de la computadora no podemos combinarlo con otro de formato diferente o preparado para otro sistema operativo (normalmente se usa DOS pero hay otros SO como UNIX, OS-2 etc…). Este problema deja de tener importancia cuando se usan discos removibles, ya que su utilización es similar a la de los discos flexibles.

Con los disquetes y con los removibles no hay problema de reconocimiento por parte de nuestro sistema operativo, porque si no lo reconoce por estar inicializado (formateado) con un sistema podemos introducir otro, pero el disco rígido si trabaja con un sistema operativo, en un principio, ya no puede utilizar otro.

Por eso los fabricantes de hardware permiten organizar el disco rígido para que acepte varios sistemas operativos por medio de lo que se denomina partición del disco duro (dividirlo en áreas).

Él formateo físico implica la creación de sectores, sus marcas de dirección (utilizadas para identificar los sectores después del formateo) y la porción de datos del sector. Él formateo lógico del disco rígido es la conversión de un disco al modelo que define el sistema operativo.

Curiosidades:

Con respecto a la lectura existe un factor bastante usado que es el “Interleaving” y consiste en lo siguiente: La cabeza lee un sector determinado, pasa los datos a un controlador y vuelve a leer otro sector que supongamos pertenece al mismo fichero. Si el tiempo entre lectura y escritura es mayor que el tiempo que tarda en girar el disco, se pueden perder datos. Para evitar esto el sistema “Interleaving” consiste en alternar los sectores que antes eran consecutivos dando tiempo al disco para procesar toda la información leída.

Otro método “Él caché de disco” que consiste en almacenar los sectores mas leídos en una memoria RAM dispuesta para este fin.

4. Medios Ópticos

Los discos ópticos presentan una capa interna protegida, donde se guardan los bits mediante distintas tecnologías, siendo que en todas ellas dichos bits se leen merced a un rayo láser incidente. Este, al ser reflejado, permite detectar variaciones microscópicas de propiedades óptico-reflectivas ocurridas como consecuencia de la grabación realizada en la escritura. Un sistema óptico con lentes encamina el haz luminoso, y lo enfoca como un punto en la capa del disco que almacena los datos.

Las tecnologías de grabación (escritura) a desarrollar son:

  • por moldeado durante la fabricación, mediante un molde de níquel (CD-ROM y DVD ROM),
  • por la acción de un haz láser (CD-R y CD-RW, también llamado CD-E),
  • por la acción de un haz láser en conjunción con un campo magnético (discos magneto-ópticos – MO).

Los discos ópticos tienen las siguientes características, confrontadas con los discos magnéticos:

Los discos ópticos, además de ser medios removibles con capacidad para almacenar masivamente datos en pequeños espacios -por lo menos diez veces más que un disco rígido de igual tamaño- son portables y seguros en la conservación de los datos (que también permanecen si se corta la energía eléctrica). El hecho de ser portables deviene del hecho de que son removibles de la unidad.
Asimismo, tienen bajo costo por byte almacenado. Los CD-ROM se copian (producen) masivamente.
La mayor capacidad de los discos ópticos frente a los magnéticos se debe al carácter puntual del haz láser incidente, y a la precisión del enfoque óptico del láser. Ello permite que en una pista los bits estén más juntos (mayor densidad lineal), y que las pistas estén más próximas (más t.p.i).
Los CD son más seguros en la conservación de los datos, dado que la capa que los almacena es inmune a los campos magnéticos caseros, y está protegida de la corrosión ambiental, manoseo, etc., por constituir un “sándwich” entre dos capas transparentes de policarbonato.
Por otra parte, la cabeza móvil -que porta la fuente láser y la óptica asociada- por estar separada a 1 mm. de la superficie del disco, nunca puede tocarla. Por ello no produce en ella desgaste por rozamiento, ni existe riesgo de “aterrizaje”, como en el disco rígido con cabezas flotantes. Tampoco el haz láser que incide sobre la información puede afectarla, dada su baja potencia.

5. Unidad cd-grabable

Una unidad de cd-grabable (CD-R) permite almacenar la información en un disco. Este tipo de unidad es útil para respaldar un disco duro o distribuir información. Puede grabar información en cada disco solo una vez. Un disco CD-Grabable puede almacenar hasta 650 MB de datos.

Una Unidad de CD-Regrabable (CD-RW) a menudo es similar a una CD-Grabable, pero le permite cambiar los datos que registra en un disco. Un disco Cd Regrabable almacena la misma cantidad de datos que un disco CD-Grabable.

Velocidad

La velocidad de una unidad de CD-ROM determina qué tan rápido gira un disco. Con altas velocidades la información se puede transferir de un disco a la computadora más rápidamente, lo que da como resultado un mejor desempeño.

La velocidad a la cual la información se transfiere de un disco a la computadora, es llamada ritmo de transferencia de datos, y es medida en Kilobytes por segundo (KBps).

La velocidad de la unidad de CD-ROM es muy importante, cuando se visualiza videos e información que se encuentran en juegos y enciclopedias. Las velocidades bajas darán como resultado un sonido de fondo entrecortado.

La mayoría de las nuevas unidades de CD-ROM tienen una velocidad de al menos 50X.

Una unidad de DVD-ROM es un dispositivo que lee la información almacenada en discos DVD-ROM o CD-ROM.

DVD-ROM quiere decir disco versátil digital- de memoria de solo lectura, lo que significa que no puede cambiar la información almacenada.

El disco es similar en tamaño y forma a un CD pero puede almacenar más información

Un solo disco DVD puede almacenar al menos 4.7 GB, lo que equivale a más de siete discos CD-ROM.

Pueden tener un solo lado o doble lado. Cada uno puede almacenar una o dos capas de datos.

Hoy en día es muy usado en reemplazo de los videos casette usados para almacenar películas.

Velocidad

La velocidad de la unidad de DVD-ROM determina cuan rápido se puede transferir datos desde un disco a la computadora. Las más nuevas pueden alcanzar velocidades equivalentes a una unidad de CD-ROM 36X.

6. Cintas para “Backup”

Este tipo de sistemas se impuso debido a una gran cantidad de discos duros no removibles.

El soporte físico empleado es parecido a un casete, pero en dimensiones mayores. Las unidades de lectura-escritura son del tamaño de una disquetera.

Dentro de un cartucho de cinta hay una tira delgada plástica con superficie magnética, similar a la encontrada en cintas para audio y cámaras de video. Cuando inserta el cartucho en la unidad, este se mueve a través de cabezas de lectura/escritura, las cuales leen y registran datos

Compresión

Algunas unidades de cintas pueden comprimir o aglomerar datos, de manera que un cartucho almacene mayor cantidad. Dependiendo del tipo de datos almacenados, la compresión puede casi
duplicar la cantidad de datos que el cartucho puede retener.

Tiempo de acceso

La velocidad a la cual una unidad de cinta recupera los datos almacenados en un cartucho es llamada tiempo de acceso. Cuanto más bajo sea, más rápida será la unidad. Un tiempo de acceso lento puede ser suficiente si tan solo necesita almacenar datos ocasionalmente, pero si lo hace en forma regular, es importante un tiempo de acceso rápido.

7. Tipos de unidad de cinta

UNIDAD QIC

Un a unidad de Cartucho de Cuarto de Pulgadas (QIC, pronunciado ‘quick”) es comúnmente utilizada en computadoras personales. Este tipo unidad es el menos costoso y más lento. Una unidad QIC de alta calidad puede almacenar hasta 10 GB de datos.

UNIDAD TRAVAN

Una unidad Travan es el tipo más nuevo y rápido de unidad QIC. Una unidad de este tipo de alta calidad puede almacenar hasta 10 GB.

UNIDAD DE 8 MM

Una unidad de 8 milímetros (mm) utiliza cartuchos de cinta similares a las cintas de 8 mm empleadas en las cámaras de video. Una unidad de este tipo puede almacenar hasta 40 GB de información.

UNIDAD DAT

Una unidad de Cinta Audio Digital (DAT) es una opción rápida utilizada para respaldar grandes cantidades de datos.

Una unidad DAT de alta tecnología puede almacenar hasta 24 GB.

8. Disquetes

Diseño de los disquetes de 5 ¼ :

Están compuestos por una lamina de poliéster (plástico flexible) de forma circular, recubierta por una película de material magnetizable.

La lamina de poliéster impregnada en la película magnética, esta cubierta con una funda flexible, normalmente cloruro de vinilo, en cuyo interior se encuentra un forro especial que sirve para proteger el disco del polvo y en cierta medida del calor y la humedad.

Hay una especie de ranuras él la conformación del disquete:

*Una ventana central en donde la unidad atrapa al disquete

*Un agujero de lectura-escritura, normalmente ovalado donde la cabeza lectora se instala.

*Cerca de la abertura central se encuentra el orificio índice que permite detectar a la unidad de disco el inicio del índice del disquete.

*Dos muescas de descarga junto a la abertura de lectura-escritura para asegurar que la funda no se deforme.

*Una ranura de protección de escritura, depende si se tapa la ranura no se puede escribir y si no se puede reescribir.

Grabación de datos:

En los disquetes los datos se graban en series de círculos concéntricos a los que denominamos “pistas”, por lo tanto la superficie de un disco queda subdivididas en pistas. Las pistas a su vez se dividen en sectores. El numero de sectores que exista en un disquete dependen del tipo de disco y su formateo, todos los disquetes tienen dos caras, en las que se puede leer y escribir. Como en ambas existen pistas al conjunto de pistas se lo denomina “cilindro”.

Cuando mezclamos todos estos conceptos, cara, pistas, tamaño del sector, obtenemos lo que se denomina “capacidad de almacenamiento” que es la multiplicación de todos estos términos:

Capac. Almac.= Nro. pistas x Nro. de sectores x Nro. de caras x Nro. de bytes/sector

Disquetes 3 ½:

Tiene prácticamente el mismo mecanismo que el de 5 ¼ , pero es diferentes en tamaño (físico y en Kbytes) la funda es de plástico rígido con una pestaña corrediza en un borde que al entrar a la unidad de disco esta se corre automáticamente.

Almacenamiento en disquetes:

El método de grabación magnética es el mismo que emplean todas las variedades de cinta magnética: casetes de música, de vídeo, etc.

La base de esta clase de grabación es la propiedad de magnetización que tienen algunos materiales, tales como el hierro.

La superficie de los discos que contienen una superficie delgada de material magnético, se trata como si fuera una matriz de posiciones de puntos, cada uno de los cuales es un bit que se activa al equivalente magnético de 0 y 1 (magnetizado o desmagnetizado, respectivamente). Como las posiciones de estos puntos no están predeterminadas, necesitan unas marcas que ayuden a la unidad de grabación a encontrar y comprobar dichas posiciones.

Otro concepto importante en los discos magnéticos es el procedimiento de acceso a su información que debe ser lo suficientemente rápido, si escuchamos un casete de música podríamos decir que el acceso es lineal por que no podemos llegar rápidamente al final de la cinta en los discos flexibles es totalmente diferente ya que existen dos movimientos que facilitan el acceso rápido, el primero de ellos es el de rotación en el que se emplea muy poco tiempo, con una velocidad aproximada de 300 r.p.m. en un disquete. El otro es el desplazamiento tangencial para ir a la posición deseada, por esto se denomina de “almacenamiento aleatorio” por que se puede ir a cualquier parte del disco sin tener que recorrer todo el trayecto.

9. Perifericos De Entrada

El teclado

Un teclado es un periférico de entrada, que convierte la acción mecánica de pulsar una serie de pulsos eléctricos codificados que permiten identificarla. Las teclas que lo constituyen sirven para entrar caracteres alfanuméricos y comandos a una computadora.

En un teclado se puede distinguir a cuatro subconjuntos de teclas:

*TECLADO ALFANUMERICO, con las teclas dispuestas como en una maquina de escribir.

*TECLADO NUMERICO, (ubicado a la derecha del anterior) con teclas dispuestas como en una calculadora.

*TECLADO DE FUNCIONES, (desde F1 hasta F12) son teclas cuya función depende del programa en ejecución.

*TECLADO DE CURSOR, para ir con el cursor de un lugar a otro en un texto. El cursor se mueve según el sentido de las flechas de las teclas, ir al comienzo de un párrafo (“HOME”), avanzar/retroceder una pagina (“PAGE UP/PAGE DOWN”), eliminar caracteres (“delete”), etc.

Cada tecla tiene su contacto, que se encuentra debajo de, ella al oprimirla se “CIERRA” y al soltarla se “ABRE”, de esta manera constituye una llave “SI-NO”.

Debajo del teclado existe una matriz con pistas conductoras que puede pensarse en forma rectangular, siendo en realidad de formato irregular. Si no hay teclas oprimidas, no se toca ningún conductor horizontal con otro vertical. Las teclas están sobre los puntos de intersección de las líneas conductoras horizontales y verticales.

Cuando se pulsa una tecla. Se establece un contacto eléctrico entre la línea conductora vertical y horizontal que pasan por debajo de la misma.

El teclado por dentro:

En un teclado de PC se verán los caminos conductores horizontales construidos, soportados y aislados en una hoja de plástico, y los verticales en otra hoja similar que esta sobre la primera.

De lado interno de cada de hoja, en cada camino existe una serie de círculos conductores formando parte del mismo, que no están aislados.

Entre dichas dos hojas con caminos conductores y cuerpo de la tecla se interpone una tercer capa de material elástico, que provee un con truncado elástico para cada tecla, el cual haría de resorte.

Debajo de cada tecla, se enfrentan, un circulo de un camino horizontal con otro de un camino vertical. Al pulsar una tecla se vence el conito que esta debajo de ella. A través de este eje de la tecla presiona uno sobre otros círculos conductores, poniéndolos en contacto. Al soltar la tecla los círculos quedan separados y aislados.

Formando parte de la caja del teclado, aparece una pastilla de circuito integrado (MINICONTROLADOR) con funciones de codificador-codificador-buffer, el cual constituye la electrónica del periférico teclado. La función de este integrado es explorar y sensar el teclado, para detectar si una tecla fue expulsada o soltada, en ambos casos un código que la identifica, y lo enviara a un port que se encuentra en la interfaz circuital denominada CONTROLADORA DEL TECLADO, ubicado en un chip de la MOTHERBOARD.

El circuito integrado presenta un buffer RAM para almacenar hasta 10 códigos identificatorios de teclas apretadas y/o soltadas.

Distintos tipos de teclados de pc:

Para los modelos AT existen dos tipos de teclados estándares:

*MF-1: con 84 teclas.

*MF-2: 101teclas (americano) ó 102 teclas (europeo).

Dentro de cada tipo puede haber diferencias en la ubicación de algunas teclas, como la barra inversa, a la izquierda (\), ó “ESC”.

En el MF-2 las teclas de función presentan dos teclas más (f11 y f12), y todas se encuentran en la parte superior del teclado, por lo cual es más ancho que el MF-1.

Teclado extendido apple:

Un teclado de 105 teclas que funciona con los ordenadores o computadoras MACINTOSH SE, MACINTOSH II y APLE IIGS. Este teclado marca la primera inclusión de las teclas de función, cuya ausencia era criticada por los usuarios de PC de IBM. Entonces APPLE incluyo varios cambios mas en el diseño de las teclas existentes que, combinadas con las teclas añadidas y los diodos luminosos se asemejaron al teclado extendido de IBM.

Existen varias tecnologías para la construcción de teclados de computadora, entre las que se destacan:

• Teclados mecánicos.

• Teclados electrónicos.

— Teclados mecánicos. Son más antiguos que los electrónicos y, en algunos casos, menos fiables y caros de construir; por ello, en la actualidad se ha pasado a construir casi todos los modelos con tecnología electrónica.

Los teclados mecánicos presentaron un problema debido a que, por su tecnología de construcción, la parte mecánica de la tecla no efectuaba sólo un contacto al pulsarla, sino que existía un efecto rebote sobre la superficie del contacto eléctrico que enviaba varias veces la señal al controlador del teclado.

— Teclados electrónicos. Solucionaron ese problema creando un retardo en el controlador para eliminar las señales producidas por el rebote. Sin embargo, han creado un curioso problema: el cerebro humano parece que por la costumbre de teclados anteriores, a lo que se denomina efecto Qwerty, «necesita» oír el Click de la tecla al golpear el teclado para poder trabajar más cómodamente y en los últimos modelos de teclados electrónicos se ha tenido que generar este sonido artificialmente.

Casi todos los teclados permiten que sus teclas sean redefinidas por software. Por ejemplo, la tecla Ñ no existe en los teclados no españoles pero, por medio de un programa, puede configurarse el sistema informático para que se imprima en la pantalla del sistema informático esta tecla cuando se pulse en un teclado en español.

Los teclados ergonómicos colocan las manos en forma natural y sostienen las muñecas de manera que se pueda trabajar cómodamente.

10. Mouse

El ratón o Mouse informático es un dispositivo señalador o de entrada, recibe esta denominación por su apariencia.

Par poder indicar la trayectoria que recorrió, a medida que se desplaza, el Mouse debe enviar al computador señales eléctricas binarias que permitan reconstruir su trayectoria, con el fin que la misma sea repetida por una flecha en el monitor. Para ello el Mouse debe realizar dos funciones :

  • en primer lugar debe generar, por cada fracción de milímetro que se mueve, uno o más pulsos eléctricos (CONVERSION ANALOGICA-DIGITAL).
  • En segundo lugar contar dichos pulsos y enviar hacia la interfaz “port serie”, a la cual esta conectado el valor de la cuenta, junto con la información acerca de sí se pulsa alguna de sus tres teclas ubicada en su parte superior.

Suponiendo que se quiera medir cuantas vueltas gira una rueda, esta presenta sobre su circunferencia exterior flejes metálicos radiales. Cada fleje al rozar un clavo ubicado en una posición fija, genera un sonido audible. Al ponerse la rueda en movimiento, una vez que un fleje rozo dicho clavo, cada vez que la rueda avanza 30º se escuche un sonido en correspondencia con el fleje que roza el clavo. Contando el número de estos sonidos discontinuos, se puede cuantificar, mediante un número, cuantas vueltas y fracción a girado la rueda. Se ha convertido así un movimiento físicamente continuo en una sucesión discontinua de sonidos aislados para medir el giro.

Se ha realizado lo que se llama una conversión “analógica-digital” que debe realizar el Mouse para que pueda medir la distancia que recorrió.

Si el Mouse se mueve cada 100 MSEG envía (a la interfaz “port serie” a la cual esta conectada) el número de pulsos que genero, lo cual pone en ejecución un programa, que sigue su desplazamiento en el paño y lo repite en la pantalla, en una flecha o en un cursor visualizable, que oficia de puntero. Esta acción se complementa con el accionamiento de las teclas que presenta el Mouse en su parte superior.

Existen dos tecnologías principales en fabricación de ratones: Ratones mecánicos y Ratones ópticos.

1. Ratones mecánicos.

Los ratones mecánicos constan de una bola situada en su parte inferior. La bola, al moverse el ratón, roza unos contactos en forma de rueda que indican el movimiento del cursor en la pantalla del sistema informático.

2. Ratones ópticos.

Los ratones ópticos tienen un pequeño haz de luz láser en lugar de la bola rodante de los mecánicos. Un sensor óptico situado dentro del cuerpo del ratón detecta el movimiento del reflejo al mover el ratón sobre el espejo e indica la posición del cursor en la pantalla de la computadora.

Una limitación de los ratones ópticos es que han de situarse sobre una superficie que refleje el haz de luz. Por ello, los fabricantes generalmente los entregan con una pequeña plantilla en forma de espejo.

¿Cómo opera en detalle un sistema con un mouse?

Cuando este se desplaza el movimiento de la bolita que esta en su parte inferior se descompone en dos movimientos según dos ruedas con ejes perpendiculares entre sí (en correspondencia con dos ejes de coordenadas X e Y) que un conversor analógico -digital traduce en pulsos eléctricos. La cantidad de pulsos generados para cada eje representa la distancia recorrida por la bolita respecto de ese eje representa la distancia recorrida por la bolita respecto de ese eje, y en relación con la ultima posición en que el Mouse estuvo quieto. Dichos pulsos se van contando en dos contadores, uno para cada eje, pudiendo ser la cuenta progresiva o regresiva, según el sentido del movimiento del Mouse respecto de dichos ejes. Los circuitos envían por un cable que va hacia un port serie del computador-el valor de la cuenta de los contadores, como dos números de 8 bits con bit be signo (rango de-128 a +127). Según el protocolo de MICROSOFT estos números se envían formando parte de bytes, cada uno de los cuales además se transmite bit de START (inicio) y STOP conforme al protocolo RS 232C para un port serie.

Se envían tres bytes cuando se pulsa o libera una tecla del mouse, aunque este no se mueva. Cuando el port recibe el primero de los tres bytes, la plaqueta con la interfaz buffer, que contiene el circuito de dicho port solicita a la ucp que interrumpa el programa en ejecución y pase a ejecutar la subrutina (Mouse driver)que maneja la información del Mouse.

11. Tableta digitalizadora

Las tabletas digitalizadoras son unas herramientas que permiten el manejo del cursor a través de la pantalla del sistema informático y facilitan una importante ayuda en el tratamiento de los comandos de órdenes en aplicaciones de CAD/CAM (diseño asistido por computadora).

Las tabletas digitalizadoras convierten una serie de coordenadas espaciales en un código binario que se introduce en la computadora. Estas coordenadas serán manejadas posteriormente por programas de dibujoingeniería, etc.

La tableta suele tener impresos en su armazón pulsadores con símbolos dibujados para ejecutar de modo directo comandos que agilizan el trabajo de manejo del software.

Las tabletas digitalizadoras poseen una resolución de alrededor de una décima de milímetro y pueden manejar gráficos en dos y tres dimensiones.

Una posibilidad de manejo muy intuitiva convierte a las tabletas digitalizadoras en unas herramientas muy útiles y polivalentes en los sistemas informáticos de diseño y manejo de gráficos.

Existen diversas tecnologías de construcción de tabletas, pudiendo ser éstas:

• Tabletas mecánicas.

• Tabletas electrónicas.

Las mecánicas, debido al desgaste producido en sus componentes por el uso continuado, son menos precisas y más delicadas de manejar que las electrónicas, siendo éstas, por ello, las más extendidas comercialmente en el mercado.

Los lápices ópticos son dispositivos de introducción de datos que trabajan directamente con la pantalla de la computadora, señalando puntos en ella y realizando operaciones de manejo de software.

Para operar con el lápiz óptico se coloca éste sobre la pantalla del sistema informático. En el momento en que el cañón de rayos catódicos de la pantalla barre el punto sobre el que se posiciona el lápiz, éste envía la información a un software especial que la maneja. El microprocesador calcula cuál es la posición sobre la pantalla de la computadora permitiendo manipular la información representada en ella.

Los lápices ópticos permiten la introducción de datos, el manejo del cursor, etc., en la pantalla de la computadora. Son una asistencia para las limitaciones de los teclados en algunas aplicaciones, sobre todo las que no son de gestión pura (creativas, etc.),

12. Escaners

Los escáneres son periféricos diseñados para registrar caracteres escritos, o gráficos en forma de fotografías o dibujos, impresos en una hoja de papel facilitando su introducción la computadora convirtiéndolos en información binaria comprensible para ésta.

El funcionamiento de un escáner es similar al de una fotocopiadora. Se coloca una hoja de papel que contiene una imagen sobre una superficie de cristal transparente, bajo el cristal existe una lente especial que realiza un barrido de la imagen existente en el papel; al realizar el barrido, la información existente en la hoja de papel es convertida en una sucesión de información en forma de unos y ceros que se introducen en la computadora.

Para mejorar el funcionamiento del sistema informático cuando se están registrando textos, los escáneres se asocian a un tipo de software especialmente diseñado para el manejo de este tipo de información en código binario llamados OCR (Optical Character Recognition o reconocimiento óptico de caracteres), que permiten reconocer e interpretar los caracteres detectados por el escáner en forma de una matriz de puntos e identificar y determinar qué caracteres son los que el subsistema está leyendo.

Un caso particular de la utilización de un scanner, aunque representa una de sus principales ventajas, es la velocidad de lectura e introducción de la información en el sistema informático con respecto al método tradicional de introducción manual de datos por medio del teclado, llegándose a alcanzar los 1.200 caracteres por segundo.

Escáner de mano.

Es el menos costoso. Tiene un ancho de escaneado aproximadamente cuatro pulgadas, y es ideal para copiar imágenes pequeñas como firmas, logotipos y fotografías.

Escáner hoja por hoja

Un escáner de hoja por hoja produce lecturas mas confiables, es menos costoso y más compacto que uno plano. Este tipo de escáner puede solamente copiar hojas sueltas. Si se desea escanear una página de un libro, se debe arrancar.

Escáner Plano

Un escáner plano es el tipo más versátil. Es ideal para escanear páginas de un libro sin tener que desprenderlas

13. Camara digital

Una cámara digital permite tomar fotos que se pueden visualizar e imprimir utilizando una computadora.

La mayoría incluyen una pantalla tipo visualizador de cristal líquido (LCD), que puede utilizar para tener una vista preliminar y visualizar la fotografías.

Incluyen un cable que permite conectar la cámara a un puerto. Permitiendo transferir las fotografías.

Almacenan fotografías hasta que se las transfiera a una computadora. La mayoría tiene una memoria integrada o removible.

Memoria removible: almacenan fotografías en una tarjeta de memoria. Algunas las almacenan en un disquete regular que calza dentro de esta. Se puede reemplazar una tarjeta de memoria o disquete cuando esté llena /o.

Memoria incorporada: almacenan al menos 20 fotografías. Una vez que está llena, se las transfiere a la computadora.

Las filmadoras son unos aparatos periféricos altamente especializados que convierten información, que se les introduce en código binario, en imágenescon una calidad similar a la de una imprenta (1.600 puntos por pulgada como mínimo) o fotogramas similares a los de cinematografía.

Las filmadoras se pueden conectar a una computadora o trabajar con ellas remotamente llevando la información hasta el punto donde están por medio de un soporte magnético.

Se utilizan para grabar conversaciones y otros sonidos, utilizando programas de conferencia para comunicarse a través de Internet. Con los programas de control de voz se puede conversar en un micrófono y emplear los comando de voz para controlar la computadora.

Unidireccional: graba sonidos de una dirección, lo que ayuda a reducir el ruido de fondo. Este tipo es útil para grabar una voz individual

Omnidireccional: graba sonidos de todas direcciones. Este tipo es útil para grabar varias voces en una conversación en grupo

Un joystick es un dispositivo que permite interactuar con un juego de computadora.

Existen diferentes tipos, los diseñados específicamente para juegos de conducir incluyen una manivela hidráulica con pedales. Otros están programados para moverse en respuesta a las acciones durante un juego.

Almohadilla: es un dispositivo pequeño, manipulado a mano que por lo general consiste en un control de movimiento en los botones izquierdo y derecho. Son muy útiles para juegos que requieren movimiento rápido.

Los lectores de tarjetas magnéticas leen la información impresa en una banda magnética de manera semejante a como la grabadora lee la música de una cinta,

Tras leer la información de la banda magnética de forma similar a como lee la información la cabeza lectora de un disco duro, el lector de tarjetas envía los datos en forma de bits a la unidad central del sistema de la computadora para su tratamiento.

Los módems son periféricos de entrada / salida que permiten la comunicación de la computadora con otra u otras computadoras a través de las líneas telefónicas.

14. Telemática

Definimos comunicación como el proceso por el que se transporta información, la cual es transmitida mediante señales, que viajan por un medio físico.

El termino TELEMATICA o TELEINFORMATICA conjunción de telecomunicaciones e informática se refiere a la disciplina que trata la comunicación entre equipos de computación distantes.

Sistema teleinformatico:

Esta constituido por:

  • Equipos informáticos (computadoras y terminales), para recibir, procesar, visualizar y enviar datos.
  • RED DE TELECOMUNICACIONES: Soporte para la comunicación, con medios de transmisión y circuitos apropiados.

15. Comunicación entre un computador y otro

La comunicación se logra mediante la utilización de las redes telefónicas y módems.

El módem puede estar en el gabinete de una PC (interno), o ser externo al mismo. Su función es permitir conectar un computador a una línea telefónica, para recibir o transmitir información.

Cuando un módem transmite, debe ajustar su velocidad de transmisión de datos, tipo de modulación, corrección de errores y de compresión. Ambos módems deben operar con el mismo estándar de comunicación.

Dos módems pueden intercambiar información en forma “full dúplex”. Esto es, mientras el primero transmite y el segundo recibe, este ultimo también puede transmitir y el primero recibir. Así se gana tiempo, dado que un módem no debe esperar al otro a que termine, para poder transmitir, como sucede en “half dúplex”.

Cuando un módem transmite tonos se dice que modula o convierte la señal digital binaria proveniente de un computador en dichos tonos que representan o portan bits.

Del mismo modo que el oído de la persona que en el extremo de la línea puede reconocer la diferencia de frecuencia entre los tonos del 0 y 1, otro módem en su lugar también detecta cual de las dos frecuencias esta generando el otro módem, y las convierte en los niveles de tensión correspondiente al 0 y al 1.

Esta acción del módem de convertir tonos en señales digitales, o sea en detectar los ceros y unos que cada tono representa, se llama desmodulación.

16. Denominación módem

La palabra módem deriva de su operación como MOdulador o DEModulador.

Un módem por un lado recibe información digital de un computador y la convierte en analógica, apropiada para ser enviada por una línea telefónica, por otro lado, de esta ultima recibe información analógica para que la convierta en digital, para ser enviada al computador.

Interfaz rs-232c:

A fin de que equipos de computación y módems de distintos fabricantes puedan interconectarse de manera universal, la norma americana rs-232c (ccitt v.24 internacional) especifica características mecánicas, funcionales y eléctricas que debe cumplir la interconexión entre un computador y un módem.

Un módem comprende hardware para conectarlo a un port serie de PC.

Velocidad de un módem y baudios:

Hay que diferenciar entre velocidad de señalización y velocidad de transmisión. Esto hace a la diferencia que existe entre baudios y bits por segundo.

Imaginemos una onda senoidal cuya amplitud puede saltar de valor entre cuatro niveles distintos. En cada segundo pueden ocurrir 2400 de estos cambios de amplitud, esta onda presenta una velocidad de señalización de 2400 baudios. Cada uno de estos saltos de amplitud en dicho segundo, es un baudio. Puesto que se puede cambiar entre cuatro amplitudes diferentes, se puede convenir que cada una representa dos bits determinados, con lo cual se tiene una velocidad de transmisión de 2400×2= 4800 bits por segundo.

La detección de cada amplitud (baud) puede hacerse cada 1/2400 de segundo= 0,4 milisegundos. Este tiempo es suficiente para que el módem pueda detectar un baud, e interpretar los dos bits que codifica.

En pocos años, la velocidad de transmisión por las líneas telefónicas comunes fue aumentando 100 veces: de 300 a 33.600 bps. Esto se logro, codificando 12 bits por baudio.

Hardware de los módems inteligentes actuales:

Hoy en día, en un módem podemos encontrar un microcontrolador, encargado de procesar los comandos que envía el usuario y un microprocesador (el digital signal processor – DSP), dedicado a la demodulacion de las complejas señales analógicas.

Este hardware permite operar a grandes velocidades y que los módems sean multinorma.

Diferencias entre los módems internos y externos:

Un módem interno esta contenido en una plaqueta similar a las que se enchufan en el interior del gabinete de una PC. Ocupa un zócalo disponible y no necesita usar un port serie.

El módem externo esta contenido en una caja propia, requiere un cable para conectarse a la PC, y otro para obtener energía.

Es adaptable a distintas computadoras. No ocupa ningún zócalo, pero debe conectase a un port serie. Presenta luces indicadoras que dan cuenta de la operación que esta realizando.

Dentro de esta clase de módem debemos incluir los PCMCIA para notebooks.

17. Códigos de barra

El lector de códigos de barra esta ampliamente difundido en el comercio y en la industria, siendo que una computadora se conecta a través de la interfaz port serie.

Posibilita la recolección de datos con rapidez, muy baja tasa de errores, facilidad y bajo costo, en comparación con la lectura visual de códigos numéricos seguida de entrada manual por teclado.

Uno de los medios más modernos, y que está tomando cada vez un mayor auge, de introducir información en una computadora es por medio de unacodificación de barras verticales.

Cada vez son más los productos que llevan en su etiqueta uno de estos códigos donde, por medio de las barras verticales de color negro, se consigue una identificación para todo tipo de productos, desde libros hasta bolsas de patatas fritas.

Esta codificación ha sido definida de forma estándar por la Organización de Estándares Internacionales y, en ella, cada una de las líneas tiene un determinado valor dependiendo, en principio, de su presencia o ausencia y también de su grosor.

En general los códigos de barra no son descifrables por las personas. Las lectoras son las encargadas de convertirlos en unos y ceros que irán a la computadora.

Representan caracteres de información mediante barras negras y blancas dispuestas verticalmente. El ancho de las barras y espacios puede ser variable, siendo la más ancha un múltiplo de la mas angosta. En binario las barras significaran unos y los espacios ceros.

Uno de los códigos de barras mas corrientes es el UPC (Universal Product Code).

Emparentado con el UPC, existe el código ISBN, usado en la cubierta de libros y revistas, también de 12 dígitos.

El código 39 codifica números y letras para usos generales, siendo muy popular. Este código se usa mucho en la industria y para inventarios.

El código entrelazado 2 de 5 (ITF), puede ser de cualquier longitud, pero con un numero par de dígitos, siendo que codifica dos dígitos por vez.

Este es uno de los pocos códigos en que los espacios en blanco tienen significado. Al presente existen unos 20 códigos de barra.

También existen códigos de barra en 2 dimensiones, que se deben escanear mediante un escáner o una cámara fotográfica digital.

Lectoras de códigos de barra:

Existen dos clases de lectoras: De haz fijo y de haz móvil. En ambos casos una fuente luminosa ilumina la superficie del código. Siendo las barras oscuras y los espacios claros, estos reflejaran mas luz que las barras. La luz reflejada es detectada por un elemento fotosensor, produciendo los espacios claros una mayor corriente eléctrica en el elemento fotosensor. Para que la lectura progrese debe existir un movimiento relativo del código respecto a la lectora o a la inversa, o bien debe existir un haz láser que se desplaza para explorar el código. Esto hace a la diferencia entre las dos clases de lectoras citadas.

La corriente eléctrica que circula por el fotosensor es proporcional a la intensidad del haz reflejado (que es la magnitud censada), que como el caso del escáner es una señal analógica. Por lo tanto, deberá convertirse en digital (unos y ceros) para ser procesada.

Diferentes tipos de lectoras:

  • Lectora manual:

Tienen forma de una lapicera, se debe desplazar de toda la longitud del código, para que un haz fijo pueda ser reflejado y censado.

  • Lectora de ranura fija:

El operador debe desplazar el código a través de una ranura de la lectora. Es de haz fijo.

  • Lectora fija con haz láser móvil:

Un rayo láser rojo anaranjado barre en un sentido a otro el código de barras decenas de veces por segundo. Un rayo láser es dirigido por un espejo móvil, que a su vez dirige el haz hacia otros espejos. Por la ventana de salida parece como si se generan muchos haces láser. Esto permite leer un código de barras que este en distintas ubicaciones espaciales respecto a la ventana citada. Estas lectoras son más exactas que las anteriores.

18. Unidades especiales de entrada / salida

Existen algunos sistemas informáticos especiales, denominados sistemas empotrados en algunos textos, que se utilizan en procesos industriales, decomunicaciones, etc., que poseen unidades de entrada y salida que no son estándares a las que se han visto anteriormente.

interfaces industriales

Los interfaces industriales son unos sensores analógicos que recogen información y, a través de un conversor analógico / digital, la transmiten a la computadora.

Estos interfaces permiten controlar procesos industriales, toman lecturas de presiones, temperaturas, etc.,. y posibilitan a la computadora la capacidad de dar órdenes de arranque o parada de motores, apertura o cierre de válvulas, etcétera.

Los interfaces industriales son sistemas informáticos indicados para trabajar en modo automático en condiciones muy adversas o en lugares donde no sería posible el acceso de un ser humano. Centrales generadoras de energía de diferente tipo (eléctrico, nuclear, etc.) son los principales centros donde se instalan estos tipos de interfaces.

Displays

Los «displays» son una serie de periféricos de salida que se utilizan en sistemas informáticos que no son de propósito general donde no son necesarias las pantallas puesto que el tipo de información que van a transmitir es simplemente datos en modo texto.

Información de control en sistemas de telecomunicaciones (módems, interfaces de comunicaciones, etc.) o ayudas a la configuración de componentes de sistemas informáticos de propósito general son las principales funciones de este tipo de periféricos.

Los sistemas más conocidos de este tipo son los que aparecen en los escaparates de algunos centros comerciales indicando ofertas de productos, información acerca de horarios de apertura y cierre, o información general de atención al cliente.

Unidades de Síntesis y Reconocimiento de Voz

Son capaces, mediante un software adecuado, de simular la voz humana a partir de información suministrada por la computadora o de reconocerla, trasladándola codificada al sistema informático al que estén conectados.

La simulación de voz está mucho más desarrollada que el reconocimiento, ya que las técnicas de programación y las potencias de cálculo son más simples en aquélla.

Las nuevas tecnologías como la multimedia y los intentos de mejora en el manejo de sistemas automáticos por parte de los usuarios, así como los sistemas de control de accesos en edificios, presentan un buen campo de investigación y desarrollo para este tipo de sistemas informáticos.

19. Periféricos de salida

Los periféricos de salida son las unidades del sistema informático a través de las que la computadora entrega información al mundo exterior.

Por su tecnología, los periféricos de salida se pueden dividir en visuales o soft copy (como las pantallas de computadora) y de impresión o hard copy (como los diversos tipos de impresoras, plotters , etc.).

La tecnología de los periféricos de salida ha evolucionado mucho desde que la computadora entregaba su respuesta en una cinta o en una hoja de papel. En la actualidad, se está experimentando con periféricos de salida mucho más intuitivos y fáciles de comprender para el hombre como los sintetizadores de voz, etc.

Los modernos entornos gráficos, la mayor manejabilidad y eficiencia en la representación de la información procesada por la computadora ayuda al usuario, sea técnico cualificado o no, a una mejor comprensión de la representación de la información entregada por la computadora.

20. Monitores

Es el periférico más utilizado en la actualidad para obtener la salida de las operaciones realizadas por la computadora. Las pantallas de los sistemas informáticos muestran una imagen del resultado de la información procesada por la computadora.

La imagen formada en la pantalla de la computadora tiene una unidad elemental llamada píxel. Los píxel de la pantalla del sistema informático forman una matriz de puntos de luz que dibuja la imagen de cada uno de los caracteres que aparecen en la pantalla de la computadora.

Cada píxel no es más que un punto de luz, sin forma definida y sin diferenciación entre el color del punto formado en primer plano y el de fondo.

El término píxel es una contracción de la expresión inglesa “picture element” y la podemos traducir libremente por elemento o punto de imagen.

Los puntos de luz forman una matriz donde se proyecta la imagen de la información de salida de la computadora, tanto si esta información de salida es de tipo carácter o gráfico.

Para diferenciar entre el color de un píxel determinado y el del fondo sobre el que se encuentra, el método es colorear cada uno de los píxel para que el ojo humano perciba la diferencia por el cambio de colores.

Los colores que pueden aparecer en la pantalla de un sistema informático están determinados por la paleta de colores que puede manejar la tarjeta gráfica conectada a la pantalla de la computadora. Las paletas oscilan entre los cuatro colores básicos de la CGA y los 256.000 colores de la SVGA.

Un punto determinado de la pantalla del sistema informático se localiza mediante el «mapeo» de la pantalla de la computadora.

El mapeo consiste en identificar cada uno de los diferentes píxel que componen la pantalla de la computadora con unas determinadas coordenadas que permiten localizarlos en ella. Posteriormente, estas coordenadas se almacenan en una zona de la memoria principal que se utiliza por el sistema informático para localizar cada uno de los píxel.

Dependiendo de la tarjeta gráfica que se utilice se almacenará mayor o menor cantidad de formación sobre cada uno de los píxel y los atributos (color, luminosidad, etc.) que tenga asociados.

Cuando toda la información necesaria para crear la imagen en la pantalla de la computadora está disponible es enviada por la tarjeta gráfica del subsistema de vídeo; la pantalla de la computadora va recibiendo los datos y los transforma en impulsos eléctricos que disparan el cañón de electrones realizando el barrido de la superficie de la pantalla del sistema informático. Esta operación de barrido se repite entre 50 y 100 veces por segundo.

Las pantallas de las computadoras pueden tener varios formatos entre los que se pueden destacar:

1. Pantallas de computadora de rayos catódicos.

Este tipo de pantallas de computadora son, externamente, similares a las pantallas de los aparatos de televisión, pero se diferencian de manera importante en su modo de funcionamiento.

Las pantallas de las computadoras proporcionan una mayor calidad de imagen, mostrándola entre 50 y 80 veces por segundo para evitar el «efecto parpadeo», que causa fatiga visual al usuario.

El número de barridos de líneas por segundo que realizan las pantallas de las computadoras es también considerablemente mayor que el de las pantallas de televisores convencionales. En algunos casos se llega a multiplicar por cinco el número de barridos por segundo que realizan las pantallas de sistemas informáticos de alta calidad con respecto al numero de barridos que realizan las pantallas de los televisores.

Las pantallas de computadora de rayos catódicos son el tipo de tecnología de pantallas de sistemas informáticos más extendido en la actualidad entre las computadoras comerciales.

Las pantallas de computadora de rayos catódicos pueden ser monocromas (de un solo color, normalmente verde, blanco o ámbar) o policromas. En estos momentos casi todos los sistemas informáticos comerciales se configuran con pantallas de color.

2. Pantallas de computadora de cristal líquido.

Las pantallas de computadora de cristal líquido se utilizaron en algunos sistemas informáticos portátiles por su mayor manejabilidad y menor tamaño que las pantallas de rayos catódicos.

El mayor inconveniente de este tipo de pantallas de computadora era que debían ser monocromas porque no podían manejar color.

En la actualidad se pueden ver sobre todo en algunos tipos de calculadoras.

3. Pantallas de computadora de plasma.

Son el tipo de pantallas que se están imponiendo actualmente en los sistemas informáticos portátiles, puesto que tienen las mismas ventajas que las anteriores, alcanzando, además, una mayor definición y la posibilidad del color.

El tamaño físico de la pantalla de los sistemas informáticos se expresa en pulgadas de diagonal, de la misma manera que las pantallas de los televisores normales.

El tamaño de pantalla de computadora más habitual entre los actuales sistemas microinformáticos suele ser el de 14 pulgadas, si bien existen tamaños de pantalla diferentes para sistemas informáticos especializados, por ejemplo 21 pulgadas para sistemas informáticos de autoedición, etc.

Los sistemas informáticos portátiles suelen tener, en la actualidad, tamaños de pantalla de entre 9 y 14 pulgadas.

El tamaño lógico de las pantallas de los sistemas informáticos se determina de forma distinta en los dos diferentes modos de trabajo vistos anteriormente en el apartado de las tarjetas gráficas:

1. En modo texto.

La pantalla del sistema informático sólo puede mostrar los 128 caracteres definidos por el código ASCII, aunque algunas pantallas de computadora pueden mostrar hasta 256 caracteres por el modo extendido del citado código.

El tamaño lógico de la pantalla de los sistemas informáticos se mide por el número de filas y el de columnas de caracteres que se pueden representar en la pantalla de la computadora. El tamaño más extendido es el de 24 ó 25 líneas y 80 columnas.

2. En modo gráfico.

La pantalla del sistema informático se divide en una serie de puntos por cada fila de información que aparece en su superficie.

El tamaño lógico de la pantalla de la computadora está directamente relacionado con la cantidad de información, en forma de puntos por fila, que proporciona la tarjeta gráfica conectada a la pantalla del sistema informático. El número de puntos puede llegar hasta los 1.280 puntos por 1.024 filas en las tarjetas gráficas SVGA.

Es evidente la mayor potencia del modo gráfico que el de texto, por ello, en la actualidad, prácticamente todas las tarjetas controladoras de los subsistemas de vídeo de las computadoras trabajan en modo gráfico.

Las pantallas de los sistemas informáticos se clasifican también por su capacidad de resolución, esto es, la cantidad de puntos de imagen que la pantalla de la computadora es capaz de manejar.

La resolución de la pantalla del sistema informático es un concepto muy importante a tener en cuenta al realizar la configuración de un nuevo sistema informático puesto que la capacidad de manejo de píxel de la pantalla de la computadora debe estar directamente relacionada con la resolución de la tarjeta gráfica del subsistema de vídeo asociado a ella. Así, no sirve de nada conectar una tarjeta de vídeo VGA a una pantalla monocroma o una tarjeta gráfica hércules a una pantalla en color.

21. Impresoras

Una impresora permite obtener en un soporte de papel una &uml;hardcopy¨: copia visualizable, perdurable y transportable de la información procesada por un computador:

Para imprimir, las impresoras constan de tres subsistemas:

  • Circuitos de preparación y control de impresión.
  • Transporte de papel.
  • Mecanismo de impresión sobre papel.

El proceso de impresión es ordenado en un programa en alto nivel mediante una orden tipo PRINT. Al ser traducido a código de máquina, dicha orden se convierte en un llamado a una subrutina del S.O o de la ROM BIOS.

La forma más corriente y veloz de conectar una impresora a una PC es la conexión, mediante el conector tipo ¨D¨ de 25 patas. Este vincula eléctricamente el manojo de cables que sale de la impresora, con las correspondientes líneas que van a los circuitos del port de datos, así como el port de estado, y a los ports de comandos, ubicados en la interfaz ¨port paralelo¨.

La conexión serie, supone un solo cable para enviar los datos a imprimir, bit a bit, desde el port a la impresora. Se usa para imprimir lentamente a distancia( hasta unos 15 mtts del computador), debido a que la conexión en paralelo solo permite distancias de hasta 3 ó 4 mts. Por la interferencia eléctrica entre líneas.

Tipos de impresoras:

Monocromáticas:

  • De matriz de agujas.
  • De chorro de tinta.
  • Láser y tecnologías semejantes.

Color:

  • De chorro de tinta.
  • Láser y tecnologías semejantes.
  • De transferencia térmica.

Impresora de impacto por matriz de agujas.

Recibe este nombre por que su cabezal móvil de la impresión contiene una matriz de agujas móviles en conductos del mismo, dispuestas en una columna o más columnas.

Es una impresora por impacto: si una aguja es impulsada hacia fuera del cabezal por un mecanismo basado en un electroimán impacta una cinta entintada, y luego retrocede a su posición de reposo merced a un resorte. La cinta sobre la zona de papel a imprimir al ser impactada por una aguja transfiere un punto de su tinta al papel. Así una aguja de 0,2 mm. de diámetro genera un punto de 0,25 mm. de diámetro. Si bien las agujas en el frente del cabezal están paralelas y muy próximas, se van separando y curvando hacia la parte posterior del cabezal, terminando en piezas plásticas como porciones que forman un círculo. De esta manera el cabezal puede alojar cada electroimán que impulsa cada aguja.

El funcionamiento de la impresora es manejado por un microprocesador ( que ejecuta un programa que está en ROM de la impresora) que forma parte de la misma. También en ROM están contenidas las letras o fuentes ¨bit map¨.

Muchas impresoras presentan además RAM para definir matrices de otras tipografías no incorporadas.

La operatoria en modo texto es la siguiente. Desde memoria llegaran al port de la impresora, byte por byte, caracteres codificados en ASCII para ser impresos, y un código acerca del tipo y estilo de cada carácter. Cada uno será transferido a través del cable de conexionado al buffer RAM de la impresora(de 8 KB.), donde se almacenarán. Según la fuente y el código ASCII de cada carácter a imprimir , el microprocesador de la impresora localiza en la ROM la matriz de puntos que le corresponde. Luego este procesador determina:

  • los caracteres que entrarán en el renglón a imprimir,
  • el movimiento óptimo del cabezal de impresión,
  • que agujas se deben disparar en cada posición del cabezal, para imprimir la línea vertical de puntos que forma la matriz de un carácter en papel.

Cuando se imprime una línea, el cabezal es acelerado para alcanzar una cierta velocidad, y desplazado en forma rectilínia hacia derecha o izquierda. Según la resolución se disparan sobre la cinta las agujas que correspondan según la porción del carácter que se está imprimiendo. Luego de imprimir una línea, el mecanismo de arrastre del papel hace que éste se desplace verticalmente.

  • Estas impresoras son especialmente útiles para imprimir varias copias usando papel carbónico y papel con perforaciones laterales para ser arrastrado con seguridad, pudiendo adquirirse con carro ancho. La desventaja es que son ruidosas y su baja velocidad. Una página por minuto en modo texto y hasta tres en borrador .
  • Una resolución típica puede ser 120 X 70 d.p.i. Los 120 d.p.i se deben a que el cabezal se dispara cada 1/120 de pulgada en su movimiento horizontal. También hay de 60 y 240 d.p.i. Los 70 d.p.i de resolución vertical suponen que entre dos agujas existe una separación de 1/70 de pulgada. También la resolución depende del diámetro de las agujas, para obtener puntos más pequeños.
  • Los gráficos no salen muy bien y tardan mucho en estas impresoras. Esto se debe a que en modo gráfico se le debe enviar al buffer de la impresora los bytes que indican que agujas deben dispararse en cada posición del cabezal. En texto en cambio solo debe enviarse a dicho buffer el código ASCII de los caracteres a imprimir.

Impresoras chorro de tinta.

Estas impresoras reciben en su memoria buffer el texto a imprimir, procedente de la memoria principal –vía la interfaz del paralelo- y para cada carácter a imprimir el microprocesador de las impresoras determina en su memoria ROM la matriz de puntos a imprimir correspondiente a la misma.

Presenta un cabezal con una matriz de orificios, que son las bocas de un conjunto de pequeños cañones de tinta. La boca de cada uno dispara una diminuta gota de tinta contra el papel, cuando así lo ordena el microprocesador de la impresora, a través de cables conductores de una cinta plana. Cada boca es la salida de un microconducto formador de burbujas y gotas de tinta al que llega tinta líquida.

Cada punto es producido por una pequeña gotita de tinta al impactar contra el papel, disparada desde un microconducto.

En un tipo de cabezal Bubble-Jet esto último se consigue por el calor que generan resistencias ubicadas al fondo de los microconductos. Para esto, el microprocesador ordena enviar un corto pulso eléctrico a las resistencias de los microconductos que deben disparar una gota. Esto hace calentar brevemente la temperatura de ebullición, la tinta de cada uno de esos microconductos, con lo cual en el fondo de ellos se genera una burbuja de vapor de tinta. Esta al crecer en volumen presiona la tinta contenida en el conducto, y desaloja por la boca del mismo un volumen igual de tinta, que forma una gota. Cada gota al incrustarse sobre el papel forma un punto de tinta. Al enfriarse luego las resistencias calentadas, desaparecen las burbujas por ellas generadas, produciéndose un efecto de succión de la tinta existente en el depósito del cartucho, para reponer la tinta gastada. Cuando se acaba la tinta del cartucho, este se descarga, pudiendo también recargarse.

También existe la impresora a chorro de tinta ¨DeskJet¨, que usa cristales piezo-eléctricos para que los microconductos del cabezal disparen sobre el papel sus correspondientes gotas de tinta. Estos aprovechan la deformación que sufren ciertos cristales cuando se les aplica un voltaje. Cada microconducto tiene adosado un cristal que al deformarse- por aplicarse un voltaje ordenado por el microprocesador- produce un efecto de bombeo sobre el microconducto, obligando que se dispare una gota.

Otro tipo de impresoras usa cartuchos que a temperatura ambiente contienen tinta sólida. La cual por medio de resistores se funde y pasa al microconducto. Luego se produce una gota. Mientras la gota se dirige al papel se va solidificando de forma que al llegar a el no es absorbido por el mismo. No se produce con esto un cierto efecto de papel secante.

Existen impresoras que disparan continuamente por todos los microconductos gotas de tinta, a razón de unas 50000 por segundo. Un subsistema desvía las gotas que no deben impactar el papel cargándolas electrostáticamente, las cuales por acción de un campo eléctrico vuelven al depósito de tinta del cabezal.

  • Las impresoras de chorro de tinta alcanzan resoluciones de mas de 600 d.p.i.
  • Pueden imprimir varias páginas por minuto en texto, y según la complejidad y grisados de un dibujo, puede tardar varios minutos por pag.

Impresoras de un color de página completa electroestáticas, con impresión laser o semejante.

La impresión electrostática se basa en la electricidad estática para llevar a cabo el siguiente proceso:

I) El haz láser crea una imagen electrostática invisible en la superficie del tambor:

El haz láser generado –encendido o apagado por el microprocesador de la impresora- está dirigido siempre en una dirección fija, hacia un espejo giratorio de dos caras planas. Mientras gira la cara sobre la que está incidiendo el haz láser, va cambiando el ángulo de incidencia del haz sobre la misma.

En correspondencia también varía constantemente el ángulo con que dicho haz se refleja en dirección a la superficie del tambor, donde siempre esta enfoca do merced a un sistema de lentes.

De esta forma se consigue que el haz reflejado por dicha cara barra una línea horizontal de esa superficie, de izquierda a derecha, pasando a través de una abertura del cartucho descartable.

A medida que recorre esa línea del tambor, el haz se enciende o apaga, en concordancia con los unos y ceros de la memoria de la impresora que codifican una línea de la imagen a imprimir. En la superficie del tambor, los puntos de la línea barrida por el haz láser que fueron tocados por este se convierten en pequeñas zonas con cargas eléctricas positivas, dada la fotosensitividad de la superficie. Los puntos no tocados mantendrán una carga negativa que les fue dada anteriormente, cuando todos los puntos de esta línea de la sup. del tambor tomaron contacto con un rodillo de goma conductora de electricidad negativa.

Luego que en sincronismo con el giro de la cara del espejo, el haz láser reflejado barrió toda la línea del tambor, el haz incidirá en la otra cara del espejo giratorio, y el microprocesador hará girar un pequeño ángulo al tambor, deteniéndose brevemente éste mientras dura otro barrido. El haz barrera otra línea horizontal del tambor, separadas por iguales pulgadas a las que había barrido antes.

Se va repitiendo el proceso de barrido de líneas, por medio del cual en cada línea de la superficie del tambor resultan puntos electropositivos donde impactó el láser, formando estas líneas una porción de la imagen a imprimir, según el correspondiente patrón de unos y ceros guardado en la memoria de la impresora.

El tóner se adhiere a la imagen electrostática creada en la superficie del tambor, ¨revelándola¨:

Un rodillo denominado revelador hace de “puerta giratoria¨ de la cavidad que contiene el tóner, para que éste pueda ser extraído de la misma, transportado por la superficie de ese rodillo.

La composición del tóner es una mezcla de partículas negras de resina plástica y partículas de hierro. El rodillo revelador tiene un núcleo magnético. Así mientras gira atrae hacia su superficie partículas de hierro del tóner de la cavidad, las cuales arrastran a las partículas plásticas, que quedan electronegativas al tocar la superficie de aluminio del rodillo, por estar ella cargada negativamente.

Con el giro del tambor, las sucesivas líneas antes barridas por el haz láser se van acercando al rodillo revelador, con partículas negativas de tóner libre en su superficie, y cercano a la superficie del tambor. A medida que dichas líneas van pasando frente a este rodillo, dichas partículas negativas de tóner saltan hacia la superficie del tambor, atraídas por los puntos positivos de ella, formándose así sobre esta superficie cilíndrica una imagen revelada con partículas de tóner adheridas a la imagen electrostática, antes formada con los puntos que toco el haz láser. Las cargas negativas de la sup. del tambor rechazan a las partículas de tóner.

II) La imagen del tambor se transfiere al papel, al pasar el tóner de uno al otro:

El sistema de arrastre del papel hace que éste pase por otro rodillo de goma conductora con carga positiva quedando electropositiva la cara del papel que no se escribe. Luego el papel pasa junto a la porción de la sup del tambor donde se formó la imagen revelada, tomando contacto con ella y acompañando su giro. Así el tambor le transfiere al papel la imagen lentamente que formó, pasándole la mayor parte de las partículas de tóner(negativas) que tienen adheridas electrostáticamente a su superficie.

Después el papel debe tomar con una varilla metálica, para que las cargas positivas pasen a masa, quedando neutra la superficie del papel que pasó por dicha varilla.

III) Fijación por calor del tóner al papel:

Posteriormente, el papel en su movimiento de arrastre es sometido a presión y calor entre dos rodillos, para fundir el tóner y así fijarlo, en su camino hacia la bandeja de salida. El rodillo o elemento que transfiere el calor al papel está recubierto por una capa de teflón.

IV) Borrado de la superficie del tambor de la imagen electrostática antes generada:

La superficie del tambor que ya transfirió el tóner pasa por debajo de un fleje paralelo próximo a ella, que elimina las partículas de tóner que no fueron transferidas al papel; y luego completando la vuelta dicha superficie pasa otra vez por el rodillo de goma conductora de electricidad negativa. Este rodillo, en una acción de borrado electrostático, elimina los puntos con carga positiva que sirvieron para adherir el tóner, quedando esa superficie homogéneamente negativa.

Otra tecnología de impresión no usa láser sino que éste es reemplazado por una fila de diodos emisores de luz (LEDs). Existe una línea de LEDs consecutivos paralela al tambor, que apunta al mismo. Para cada línea del tambor que quede frente a éstos diodos, aquellos diodos que deben iluminar puntos en dicha generatriz son encendidos por el microprocesador. Siendo los puntos que fueron brevemente iluminados por los LEDs convertidos – por ser la superficie fotosensible – en puntos con carga positiva. Luego el tambor girará a una nueva posición, y el conjunto de LEDs iluminarán puntos de la nueva generatriz que está frente a ellos, y así de seguido. La tecnología de semiconductores (diodos) con cristal líquido (LCS) es semejante a la con LEDs. Cada LCS presenta un cristal que puede ser transparente u opaco, según el valor de una señal eléctrica que le llega al diodo. Ésta señal es ordenada por el microprocesador dejando así cada cristal pasar o no la luz de una lámpara halógena que ilumina todos los cristales. La luz que dejan pasar por sus cristales los diodos activados, incide en forma de puntos en la generatriz del tambor que está frente a ellos en ese momento.

Por último la tecnología de impresión por emisión de electrones, también llamada deposición de iones, de gran velocidad de impresión. En este tipo de impresoras de páginas, las funciones del haz láser son realizadas por haces de electrones generados en un ¨cartucho de emisión de estado sólido¨, que opera con altas tensiones y frecuencias. La superficie del tambor es de material dieléctrico(aislante), bajo el cual el cilindro es de aluminio anodizado. El tóner ( con carga positiva), se adhiere sobre la superficie con dieléctrico del tambor, en los puntos cargados negativamente.

En ésta técnica el tóner adherido al papel se fija a él mediante un rodillo de gran presión, ahorrando energía eléctrica para derretirlo.

  • Existen impresoras láser que van de 300 d.p.i. a 3600 d.p.i.
  • Para aplicaciones de gran volumen de impresión, existen modelos que imprimen más de 20000 líneas por minuto.
  • Las impresoras láser para red, son compartidas por un grupo de computadoras que forman una red local. Algunas pueden imprimir hasta 32 páginas por minuto.

22. Los tonos de grises en una impresión.

La vista promedia el valor cromático de puntos muy cercanos, cuando el tamaño del conjunto es del orden del que puede distinguir la agudeza visual de un observador.

Entonces, el subconjunto de puntos negros y blancos forman un ¨superpunto¨ gris o ¨celda de medio tono¨ o ¨superpixel¨. A su vez superpuntos de igual tamaño y regularmente espaciados, con espacios en blanco entre ellos, construyen zonas de grisados.

Esto se consigue a costa de la resolución de la imagen, por tratarse de puntos más grandes. Así, estos superpuntos pueden comprender 16 puntos elementales(¨pixel¨) formando una matriz de 4X4, con lo cual las resoluciones horizontal y vertical se verán reducidas a la cuarta parte. Los 16 puntos que ahora puede tener cada punto, permite obtener 17 tonalidades distintas de gris, variando la cantidad de puntos negros entre 0(blanco) y 16(negro). Si la matriz es de 8X8 serían 64 tonos. Cuanto mayor sea la gama de grises, menor será la resolución resultante, pues mayor será el tamaño del superpunto.

Esta técnica se denomina ¨dithering¨. La resolución importa para textos ya que no se hará tan notoria en los gráficos para el ojo humano.

La cantidad de tonos de gris disponibles constituye la ¨profundidad de la imagen¨. En las artes gráficas, la cantidad de puntos grises por pulgada se llama cantidad de líneas por pulgada.

23. Formación de colores en una impresión

Sobre un objeto o superficie incide luz blanca y el color que vemos es la luz que resulta luego de haber sido absorbido, restado,( por la estructuraquímica de la superficie)el color complementario a dicho color.

Los pares de colores complementarios más usados son: rojo-cian, azul-amarillo y verde-magenta. En las impresoras el color se genera de esta forma. Se usan como colores básicos para formar cualquier otro color el cian, el amarillo y el magenta. La mezcla de estos tres debería dar negro pero al no ser así se agrega un negro.

Por lo tanto una impresora color debe tener cuatro tintas, indentificables con CYMK.

Cuando tiene que generar un color que no sea alguno de estos, combina los mismos en forma adecuada. Dado que solo imprime puntos, mediante un método semejante para producir grisados genera superpuntos del color deseado, que contienen formaciones de puntos elementales con colores básicos del grupo CYMK. Como la vista a la distancia tiende a fundir los colores de estos puntos en un solo color, un superpunto puede verse de un cierto color. Un conjunto de superpuntos regularmente espaciados se ven como una zona de un color determinado.

24. Impresoras chorro de tinta y láser color.

En la impresora de color chorro de tinta, para expulsar gotas de tinta por los orificios del cabezal descartable, se emplean las tecnologías por calor y bombeo piezo-eléctrico. El cabezal provee tintas con los colores CYMK, y resultan más complejos sus movimientos.

Estas impresoras son lentas, y los colores pueden decolorarse con el tiempo.

El principio de funcionamiento visto para impresión monocroma también se conserva en las impresoras láser color. Los cuatro colores de tóner están contenidos en el cartucho. Un procedimiento de impresión requiere cuatro vueltas del tambor para imprimir una pagina, a razón de una por color. En cada vuelta el haz láser dibuja los puntos del cilindro que deben atraer las partículas de tóner con uno de esos cuatro colores. El tóner de otro color adherido en vueltas anteriores se mantiene en la superficie del cilindro. En la carta vuelta también tiene lugar el proceso de fijación de los colores de tóner al papel.

Resulta así una velocidad cuatro veces más lenta que una láser monocromática. Aparte de estos las impresiones color son bastante costosas en equipos e insumos. Se obtienen imágenes brillantes y duraderas.

25. Impresora color por transferencia térmica.

En las impresoras térmicas el cabezal está fijo, y ocupa el ancho del papel a imprimir. Los puntos que entintan el papel son producidos por elementos puntuales(una sola fila), que actúan por calor, derritiendo puntos de una cera sólida que recubre una supercinta multicolor descartable. Ella cubre todo el ancho del papel, y se mueve junto con este. Los colores CYMK sobre las supercintas forman franjas.

Esto lo hace de acuerdo a los unos y ceros que representan la imagen a imprimir almacenados en el buffer de la impresora. Un rodillo de impresión aprieta el papel contra la supercinta calentada por las agujas del cabezal, de modo que los puntos de cera derretida pasen al papel.

La cantidad de resistores por pulgada que presenta la línea de agujas del cabezal , determina la resolución de la impresora.

Otra impresora activada por calor es la de difusión de tinta, en la cual el colorante de la supercinta se difunde sobre papel, produciendo colores más densos a mayor temperatura. Así es posible generar 256 colores en puntos impresos.

Las impresoras térmicas usan papel termosensible, que se oscurece en puntos con el calor al pasar por el cabezal fijo de puntos calentados.

FUNCIONAMIENTO DE LAS MEMORIAS RAM.La memoria principal o RAM (acrónimo de Random Access Memory,Memoria de Acceso Aleatorio) es donde el ordenador guarda los datos que estáutilizando en el momento presente. Se llama de acceso aleatorio porque el procesador accede a la información que está en la memoria en cualquier punto sin tener que accedera la información anterior y posterior. Es la memoria que se actualiza constantementemientras el ordenador está en uso y que pierde sus datos cuando el ordenador se apaga.

Proceso de carga en la memoria RAM:

Cuando las aplicaciones se ejecutan, primeramente deben ser cargadas enmemoria RAM. El procesador entonces efectúa accesos a dicha memoria para cargar instrucciones y enviar o recoger datos. Reducir el tiempo necesario para acceder a la
memoria, ayuda a mejorar las prestaciones del sistema. La diferencia entre la RAM yotros tipos de memoria de almacenamiento, como los disquetes o discos duros, es que laRAM es mucho más rápida, y se borra al apagar el ordenador.

Es una memoria dinámica, lo que indica la necesidad de “recordar” los datos ala memoria cada pequeños periodos de tiempo, para impedir que esta pierda lainformación. Eso se llama Refresco. Cuando se pierde la alimentación, la memoria pierde todos los datos. “Random Access”, acceso aleatorio, indica que cada posición de memoria puede ser leída o escrita en cualquier orden. Lo contrario seria el accesosecuencial, en el cual los datos tienen que ser leídos o escritos en un orden predeterminado.

Las memorias poseen la ventaja de contar con una mayor velocidad, mayor capacidad de almacenamiento y un menor consumo. En contra partida presentan el CPU, Memoria y Disco Duro.
Los datos de instrucciones cuando se carga un programa, se carga en memoria. (DMA)

El inconveniente es de que precisan una electrónica especial para su utilización, la función de esta electrónica es generar el refresco de la memoria. La necesidad de los refrescos de las memorias dinámicas se debe al funcionamiento de las mismas, ya que este se basa en generar durante un tiempo la información que contiene. Transcurrido este lapso, la señal que contenía la célula biestable se va perdiendo. Para que no ocurra esta perdida, es necesario que antes que transcurra el tiempo máximo que la memoria puede mantener la señal se realice una lectura del valor que tiene y se recargue la misma.
Es preciso considerar que a cada bit de la memoria le corresponde un pequeño condensador al que le aplicamos una pequeña carga eléctrica y que mantienen durante un tiempo en función de la constante de descarga. Generalmente el refresco de memoria se realiza cíclicamente y cuando esta trabajando el DMA. El refresco de la memoria en modo normal esta a cargo del controlador del canal que también cumple la función de optimizar el tiempo requerido para la operación del refresco.

Posiblemente, en más de una ocasión en el ordenador aparecen errores de en la memoria debido a que las memorias que se están utilizando son de una velocidad inadecuada que se descargan antes de poder ser refrescadas.
Las posiciones de memoria están organizadas en filas y en columnas. Cuando se quiere acceder a la RAM se debe empezar especificando la fila, después la columna y por último se debe indicar si deseamos escribir o leer en esa posición. En ese momento la RAM coloca los datos de esa posición en la salida, si el acceso es de lectura o coge los datos y los almacena en la posición seleccionada, si el acceso es de escritura.

La cantidad de memoria Ram de nuestro sistema afecta notablemente a las prestaciones, fundamentalmente cuando se emplean sistemas operativos actuales. En general, y sobretodo cuando se ejecutan múltiples aplicaciones, puede que la demanda de memoria sea superior a la realmente existente, con lo que el sistema operativo fuerza al procesador a simular dicha memoria con el disco duro (memoria virtual). Una buena inversión para aumentar las prestaciones será por tanto poner la mayor cantidad de RAM posible, con lo que minimizaremos los accesos al disco duro.

Los sistemas avanzados emplean RAM entrelazada, que reduce los tiempos de acceso mediante la segmentación de la memoria del sistema en dos bancos coordinados. Durante una solicitud particular, un banco suministra la información al procesador, mientras que el otro prepara datos para el siguiente ciclo; en el siguiente acceso, se intercambian los papeles.
Los módulos habituales que se encuentran en el mercado, tienen unos tiempos de acceso de 60 y 70 ns (aquellos de tiempos superiores deben ser desechados por lentos).

Es conveniente que todos los bancos de memoria estén constituidos por módulos con el mismo tiempo de acceso y a ser posible de 60 ns.
Hay que tener en cuenta que el bus de datos del procesador debe coincidir con el de la memoria, y en el caso de que no sea así, esta se organizará en bancos, habiendo de tener cada banco la cantidad necesaria de módulos hasta llegar al ancho buscado. Por tanto, el ordenador sólo trabaja con bancos completos, y éstos sólo pueden componerse de módulos del mismo tipo y capacidad. Como existen restricciones a la hora de colocar los módulos, hay que tener en cuenta que no siempre podemos alcanzar todas las configuraciones de memoria. Tenemos que rellenar siempre el banco primero y después el banco número dos, pero siempre rellenando los dos zócalos de cada banco (en el caso de que tengamos dos) con el mismo tipo de memoria. Combinando diferentes tamaños en cada banco podremos poner la cantidad de memoria que deseemos.

Tipos de memorias RAM:

DRAM:
Acrónimo de “Dynamic Random Access Memory”, o simplemente RAM ya que es la original, y por tanto la más lenta.
Usada hasta la época del 386, su velocidad de refresco típica es de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, la más rápida es la de 70 ns. Físicamente, aparece en forma de DIMMs o de SIMMs, siendo estos últimos de 30 contactos.

FPM (Fast Page Mode):
A veces llamada DRAM, puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia.
Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns. Es lo que se da en llamar la RAM normal o estándar. Usada hasta con los primeros Pentium, físicamente aparece como SIMMs de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486). Para acceder a este tipo de memoria se debe especificar la fila (página) y seguidamente la columna. Para los sucesivos accesos de la misma fila sólo es necesario especificar la columna, quedando la columna seleccionada desde el primer acceso. Esto hace que el tiempo de acceso en la misma fila (página) sea mucho más rápido. Era el tipo de memoria normal en los ordenadores 386, 486 y los primeros Pentium y llegó a alcanzar velocidades de hasta 60 ns. Se
presentaba en módulos SIMM de 30 contactos (16 bits) para los 386 y 486 y en módulos de 72 contactos (32 bits) para las últimas placas 486 y las placas para Pentium.

EDO o EDO-RAM:
Extended Data Output-RAM. Evoluciona de la FPM. Permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos).
Mientras que la memoria tipo FPM sólo podía acceder a un solo byte (una instrucción o valor) de información de cada vez, la memoria EDO permite mover un bloque completo de memoria a la caché interna del procesador para un acceso más rápido por parte de éste. La estándar se encontraba con refrescos de 70, 60 ó 50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168.

La ventaja de la memoria EDO es que mantiene los datos en la salida hasta el siguiente acceso a memoria. Esto permite al procesador ocuparse de otras tareas sin tener que atender a la lenta memoria. Esto es, el procesador selecciona la posición de memoria, realiza otras tareas y cuando vuelva a consultar la DRAM los datos en la salida seguirán siendo válidos. Se presenta en módulos SIMM de 72 contactos (32 bits) y módulos DIMM de 168 contactos (64 bits).

SDRAM:
Sincronic-RAM. Es un tipo síncrono de memoria, que, lógicamente, se sincroniza con el procesador, es decir, el procesador puede obtener información en cada ciclo de reloj, sin estados de espera, como en el caso de los tipos anteriores. Sólo se presenta en forma de DIMMs de 168 contactos; es la opción para ordenadores nuevos. SDRAM funciona de manera totalmente diferente a FPM o EDO. DRAM, FPM y EDO transmiten los datos mediante señales de control, en la memoria SDRAM el acceso a los datos esta sincronizado con una señal de reloj externa.

La memoria EDO está pensada para funcionar a una velocidad máxima de BUS de 66 Mhz, llegando a alcanzar 75MHz y 83 MHz. Sin embargo, la memoria SDRAM puede aceptar velocidades de BUS de hasta 100 MHz, lo que dice
mucho a favor de su estabilidad y ha llegado a alcanzar velocidades de 10 ns. Se presenta en módulos DIMM de 168 contactos (64 bits). El ser una memoria de 64 bits, implica que no es necesario instalar los módulos por parejas de módulos de igual tamaño, velocidad y marca

PC-100 DRAM:
Este tipo de memoria, en principio con tecnología SDRAM, aunque también la habrá EDO. La especificación para esta memoria se basa sobre todo en el uso no sólo de chips de memoria de alta calidad, sino también en circuitos impresos de alta calidad de 6 o 8 capas, en vez de las habituales 4; en cuanto al circuito impreso este debe cumplir unas tolerancias mínimas de interferencia eléctrica; por último, los ciclos de memoria también deben cumplir unas especificaciones muy exigentes. De cara a evitar posibles confusiones, los módulos compatibles con este estándar deben estar identificados así: PC100-abc-def.

BEDO (burst Extended Data Output):
Fue diseñada originalmente parasoportar mayores velocidades de BUS. Al igual que la memoria SDRAM, esta memoria es capaz de transferir datos al procesador en cada ciclo de reloj, pero no de forma continuada, como la anterior, sino a ráfagas (bursts), reduciendo, aunque no suprimiendo totalmente, los tiempos de espera del procesador para escribir o leer datos de memoria.

RDRAM (Direct Rambus DRAM):
Es un tipo de memoria de 64 bits que puede producir ráfagas de 2ns y puede alcanzar tasas de transferencia de 533MHz, con picos de 1,6 GB/s. Pronto podrá verse en el mercado y es posible que tu próximo equipo tenga instalado este tipo de memoria.

Es el componente ideal para las tarjetas gráficas AGP, evitando los cuellos de botella en la transferencia entre la tarjeta gráfica y la memoria de sistema durante el acceso directo a memoria (DIME) para el almacenamiento de texturas gráficas. Hoy en día la podemos encontrar en las consolas NINTENDO 64.

DDR SDRAM (Double Data Rate SDRAM o SDRAM-II):
Funciona a velocidades de 83, 100 y 125MHz, pudiendo doblar estas velocidades en la transferencia de datos a memoria. En un futuro, esta velocidad puede incluso llegar a triplicarse o cuadriplicarse, con lo que se adaptaría a los nuevos procesadores. Este tipo de memoria tiene la ventaja de ser una extensión de la memoria SDRAM, con lo que facilita su implementación por la mayoría de los fabricantes.

SLDRAM:
Funcionará a velocidades de 400MHz, alcanzando en modo doble 800MHz, con transferencias de 800MB/s, llegando a alcanzar 1,6GHz, 3,2GHz en modo doble, y hasta 4GB/s de transferencia. Se cree que puede ser la memoria a utilizar en los grandes servidores por la alta transferencia de datos.

ESDRAM:
Este tipo de memoria funciona a 133MHz y alcanza transferencias de hasta 1,6 GB/s, pudiendo llegar a alcanzar en modo doble, con una velocidad de 150MHz hasta 3,2 GB/s.

La memoria FPM (Fast Page Mode) y la memoria EDO también se utilizan en tarjetas gráficas, pero existen además otros tipos de memoria DRAM, pero que SÓLO de utilizan en TARJETAS GRÁFICAS, y son los siguientes:

- MDRAM (Multibank DRAM) Es increíblemente rápida, con transferencias de hasta 1 GIGA/s, pero su coste también es muy elevado.
- SGRAM (Synchronous Graphic RAM) Ofrece las sorprendentes capacidades de la memoria SDRAM para las tarjetas gráficas. Es el tipo de memoria más popular en las nuevas tarjetas gráficas aceleradoras 3D.
- VRAM Es como la memoria RAM normal, pero puede ser accedida al mismo tiempo por el monitor y por el procesador de la tarjeta gráfica, para suavizar la presentación gráfica en pantalla, es decir, se puede leer y escribir en ella al mismo tiempo.
- WRAM (Window RAM) Permite leer y escribir información de la memoria al mismo tiempo, como en la VRAM, pero está optimizada para la presentación de un gran número de colores y para altas resoluciones de pantalla. Es un poco más económica que la anterior.
La arquitectura PC establece que los datos que constituyen una imagen a mostrar en el monitor no se mapeen en la RAM que podamos tener en la placa madre, sino en la memoria RAM que se encuentra en la propia tarjeta de vídeo.

Por tanto, para concluir contar que con la introducción de procesadores más rápidos, las tecnologías FPM y EDO empezaron a ser un cuello de botella. La memoria más eficiente es la que trabaja a la misma velocidad que el procesador. Las velocidades de la DRAM FPM y EDO eran de 80, 70 y 60 ns, lo cual era suficientemente rápido para velocidades inferiores a 66MHz. Para procesadores lentos, por ejemplo el 486, la memoria FPM era suficiente.

Con procesadores más rápidos, como los Pentium de primera generación, se utilizaban memorias EDO. Con los últimos procesadores Pentium de segunda y tercera generación, la memoria SDRAM es la mejor solución.

La memoria más exigente es la PC100 (SDRAM a 100 MHz), necesaria para montar un AMD K6-2 o un Pentium a 350 MHz o más. Va a 100 MHz en vez de los 66 MHZ usuales.

Tecnologías de memorias RAM: SIMMs y DIMMs:

Se trata de la forma en que se organizan los chips de memoria, del tipo que sean, para que sean conectados a la placa base del ordenador. Son unas placas alargadas con conectores en un extremo; al conjunto se le llama módulo. El número de conectores depende del bus de datos del microprocesador.

1. SIMM de 72 contactos, los más usados en la actualidad. Se fabrican módulos de 4, 8, 16,32 y 64 Mb.
2. SIMM EDO de 72 contactos, muy usados en la actualidad. Existen módulos de 4, 8, 16,32 y 64 Mb.
3. SIMM de 30 contactos, tecnología en desuso, existen adaptadores para aprovecharlas y usar 4 de estos módulos como uno de 72 contactos. Existen de 256 Kb, 512 Kb (raros), 1, 2 (raros), 4, 8 y 16 Mb.
4. SIPP, totalmente obsoletos desde los 386 (estos ya usaban SIMM mayoritariamente).
SIMMs: Single In-line Memory Module, con 30 ó 72 contactos. Los de 30 contactos pueden manejar 8 bits cada vez, por lo que en un 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. Su capacidad es de 256 Kb, 1 Mb ó 4 Mb. Miden unos 8,5 cm (30 c.) ó 10,5 cm (72 c.) y sus zócalos suelen ser de color blanco. Los SIMMs de 72 contactos, manejan 32 bits, por lo que se usan de 1 en 1 en los 486; en los Pentium se haría de 2 en 2 módulos (iguales), porque el bus de datos de los Pentium es el doble degrande (64 bits). La capacidad habitual es de 1 Mb, 4 Mb, 8 Mb, 16, 32 Mb.
5. DIMMs, más alargados (unos 13 cm), con 168 contactos y en zócalos generalmente negros. Pueden manejar 64 bits de una vez, por lo que pueden usarse de 1 en 1 en los Pentium, Pentium II y Pentium III. Existen para voltaje estándar (5 voltios) o reducido (3.3 V).

Y podríamos añadir los módulos SIP, que eran parecidos a los SIMM pero con frágiles patitas soldadas y que no se usan desde hace bastantes años, o cuando toda o parte de la memoria viene soldada en la placa (caso de algunos ordenadores de marca).

Funcionamiento de la Memoria de Almacenamiento Masivo
 Memorias USB
Una memoria flash USB (Universal Serial Bus), es un pequeño dispositivo de almacenamiento masivo 100% electrónico, es decir, no tiene partes mecánicas en movimiento que produzcan fricción; consta de una pequeña cubierta que protege los circuitos de almacenamiento y un conector de tipo USB. Permite la escritura y borrado de la información (archivos de Office, videos, música, e incluso sistemas operativos, etc.), de manera rápida, sencilla y segura; siendo conectado por medio del puerto USB de la computadora.
Como apoyo a la comprensión del tema, te ofrecemos una animación sobre el funcionamiento interno de una memoria Flash-NAND:
1) La celda de memoria NAND se carga de una corriente eléctrica media cuándo indica el valor 1.
2) La celda de memoria NAND se carga de una corriente eléctrica baja cuándo indica el valor 0.
3) Al apagar la computadora, las cargas se quedan activas debido a un efecto de campo integrado que las mantiene cautivas y pueden tardar hasta 10 años en descargarse totalmente.
Para mas informacion consulta esta pagina:
http://www.informaticamoderna.com/Memorias_USB.htm#ani
¿Qué es una caché?
Imagine dos sistemas de memoria A y B, entre los cuales se transfiere información. Suponga que el sistema A es más rápido y presenta menor capacidad de almacenamiento que B (situación típica en un PC). Esto se traduce en que A debe funcionar a menor velocidad de la que es capaz de ofrecer, siempre que se comunique con B. Se puede mejorar la velocidad de transferencia introduciendo un nuevo sistema de memoria C entre A y B, al que se denomina caché. La caché debe presentar una capacidad de almacenamiento mayor que la de A y menor que la de B. Además, será más lenta que A, pero más rápida que B. En otras palabras, sus características son un término medio entre los sistemas A y B. La aceleración de las transferencias se basa en almacenar la información intercambiada últimamente entre A y B, puesto que con gran probabilidad será la más empleada en las próximas transferencias. La aplicación de sistemas de caché recibe el nombre de caching.
Esto ya se introdujo al colocar la memoria RAM entre la CPU (rápida y con poca capacidad) y otros dispositivos lentos (y de gran capacidad), como es el caso del disco duro.
Ya que esta definición es quizá un tanto confusa, en el siguiente apartado presentamos más detalles acerca del funcionamiento de una caché, que permiten entender el concepto con mayor claridad. Tomaremos como referencia un tipo particular de caché: la caché de memoria. Ésta se introduce entre la RAM y la CPU. De esta forma, se consigue incrementar notablemente la velocidad con que la CPU accede a la memoria principal. Por supuesto, la memoria caché será más rápida que la RAM, y dispondrá de menor capacidad de almacenamiento. Veamos cómo funciona.
¿Cómo funciona una caché de memoria?
En realidad, el funcionamiento de una caché sigue un principio parecido al que formulamos para la memoria principal. En aquel caso, las instrucciones y datos se cargaban en la RAM (desde dispositivos lentos), donde la CPU podría acceder a mayor velocidad.
Una caché de memoria se carga (desde la RAM) con los datos y/o instrucciones que ha buscado la CPU en las últimas operaciones. La CPU buscará siempre primero la información en la caché, y la encontrará allí la mayoría de las veces, con lo que el acceso será muy rápido. Si, desgraciadamente, no se encuentra la información en la caché, se perderá un tiempo extra en acudir a la RAM y copiar dicha información en la caché para que esté disponible (ver Figura 1). Como estos fallos ocurren con una frecuencia relativamente baja, el rendimiento mejora considerablemente, ya que la CPU accederá más veces a la caché que a la RAM. Lo comentado para la búsqueda en memoria funciona de forma análoga para la escritura: la CPU escribe en la caché en lugar de la RAM (más adelante hablaremos de dicho proceso con mayor detalle).
No es de extrañar que esta técnica (caching) funcione. La mayoría de programas tiene un alto contenido en bucles, lo que implica un uso repetido de instrucciones (e incluso datos). Y esto implica una elevada probabilidad de acierto al buscar la información en la caché.
Una forma interesante de ilustrar el funcionamiento de la caché consiste en imaginar un videoclub, equipado con un mostrador y una habitación capaz de almacenar cientos de vídeos. Ante la petición de cada cliente, el dependiente deberá acudir hasta el almacén, buscar la película solicitada, volver al mostrador y entregar la cinta al cliente. Ante la devolución de una cinta, el dependiente debe caminar hacia el almacén y guardar dicha cinta en el lugar apropiado. Realmente esa forma de trabajo no es nada eficiente, ya que implica demasiados desplazamientos y, por tanto, la atención al cliente será realmente lenta.
Suponga ahora que el dependiente dispone de un pequeño archivador de 20 vídeos sobre el mostrador. Cuando un cliente devuelve una cinta, el dependiente coloca la cinta directamente en el archivador, en lugar de caminar hacia el almacén. Si se va repitiendo dicho proceso, el dependiente dispondrá continuamente de las veinte últimas películas devueltas en el archivador. Cuando se acerque un cliente y pida una película, el dependiente la buscará primero en el archivador, y sólo si no la encuentra allí se desplazará hacia el almacén. Este método funciona, sobre todo porque la mayor parte de las películas devueltas serán las de estreno, que al mismo tiempo son las más solicitadas.

Otros tipos de caché
Aunque hasta ahora hemos hablado de la caché con respecto a la memoria RAM, en un PC existen muchos otros sistemas de caché.
Sin ir más lejos, las unidades de almacenamiento (discos duros, discos flexibles, etc.) y otros muchos periféricos utilizan la memoria RAM como sistema de caché. En efecto, una zona de la RAM contiene la información que se ha buscado últimamente en dichos dispositivos, de forma que basta con acceder a la RAM para recuperarla. La escritura funciona de forma análoga: se escribe información directamente en la RAM, y ésta se vuelca a las unidades asociadas cuando es oportuno. Evidentemente, el rendimiento mejora de forma notable. Incluso es posible emplear el disco duro como caché de cara a dispositivos aún más lentos (como son las unidades CD-ROM). Estos sistemas de caché suelen estar gobernados mediante software, que se suele integrar en el sistema operativo.
Es sencillo realizar un experimento para apreciar la presencia de estos tipos de caché en cualquier PC. Basta con que introduzca un disco flexible en la unidad correspondiente con un archivo de texto de unos 300 kB. A continuación, inicie el bloc de notas y abra el fichero de texto. Apreciará que el indicador luminoso de acceso a la unidad permanece varios segundos activo, hasta que finalmente aparece el texto en pantalla. Acto seguido, cierre el bloc de notas y repita el proceso. En esta ocasión, el texto aparecerá casi instantáneamente en pantalla y el indicador luminoso no se encenderá. ¿Qué ha ocurrido? En la primera ocasión se ha acudido al disco para copiar la información en la RAM (ver Figura 2), y de ahí la tardanza. En el segundo acceso, el sistema operativo ha buscado directamente en la caché asociada al disco flexible y ha encontrado la información buscada, por lo que el acceso es mucho más rápido (ver Figura 3).
Aún existen más tipos de caché. Incluso los navegadores Web utilizan el disco duro como caché para almacenar las últimas páginas visitadas. Al solicitar una página Web, el navegador acude a Internet y comprueba la fecha de la misma. Si la página no ha sido modificada, se toma directamente del disco duro, con lo que la carga es muy rápida. En caso contrario se descarga desde Internet y se actualiza la caché, pagando un cierto tiempo de espera como precio. En el caso de los navegadores Web, el uso del disco duro es más que suficiente, ya que es extremadamente más rápido que el acceso a Internet.

Niveles de caché
Tal y como acabamos de mostrar, un PC incorpora varios tipos de caché. Pero, ¿de qué forma están organizados? Usualmente, los diferentes sistemas de caché se organizan por niveles, formando una jerarquía. En general se cumple que, a mayor cercanía a la CPU, se presenta mayor velocidad de acceso y menor capacidad de almacenamiento (ver Figura 4).
Para empezar, la caché de memoria se suele desglosar en dos niveles. En el nivel más cercano a la CPU se encuentra la caché L1 (level 1 o nivel 1). Ésta se halla integrada en el mismo chip que la CPU, con lo que el acceso se produce a la velocidad de trabajo del procesador (la máxima velocidad). Por supuesto, la caché L1 presenta un tamaño muy reducido (de 4 a 16 kB).
A continuación aparece la caché de nivel 2 o L2. Inicialmente, se instalaba en la placa base, en el exterior de la CPU. Los procesadores actuales la integran en el propio chip. Como era de esperar, tiene mayor capacidad que la caché L1 (de 128 a 512 kB) pero es una memoria más lenta. Por ejemplo, en el procesador Pentium II la velocidad de acceso era la mitad respecto a la caché L1.
El siguiente nivel lo constituye la memoria RAM, que ya tratamos en la anterior entrega. Como ya hemos comentado, la RAM suele hacer de caché para los dispositivos de almacenamiento y otros tipos de periféricos. El nivel más alto lo ocuparían las caché en disco duro, como son las utilizadas por los navegadores Web.
La búsqueda de información comienza por la caché L1, y se va subiendo nivel a nivel en caso de no encontrar lo que se busca en el nivel actual. Por supuesto, cuantas más capas haya que ascender, mayor retardo se pagará. Pero, a mayor cercanía a la CPU, la probabilidad de encontrar lo que se busca es mayor. Esta forma de trabajo resulta una excelente relación de compromiso entre diversos factores, y consigue mejorar el rendimiento del ordenador de forma notable.

Estructura y funcionamiento interno de una caché de memoria
No es el objetivo de este artículo presentar con detalle la arquitectura interna de una caché L2, pero es conveniente proporcionar un conocimiento general sobre lo que ocurre en su interior.
Al igual que ocurría con la RAM, es apropiado pensar en la caché como un arreglo de tipo tabla. En este caso, cada celda almacena un octeto o byte. No es raro que una caché de 512 kB se distribuya en 16.384 filas (16 kB) y 32 columnas (32 bytes).
La entidad básica de almacenamiento la conforman las filas, a las que se llama también “líneas de caché”. En el ejemplo anterior se dispone de 16.384 líneas de caché, de 32 bytes cada una. Nunca se toma un byte de la RAM y se escribe en una celda de la caché. Por el contrario, en cada movimiento siempre se copia información de la RAM suficiente para cubrir una línea de caché (en el ejemplo, siempre se mueven 32 bytes). En el caso de la escritura, el funcionamiento es totalmente análogo.
Toda caché incorpora, además, un espacio de almacenamiento llamado Tag RAM, que indica a qué porción de la RAM se halla asociada cada línea de caché. En otras palabras, la Tag RAM permite traducir una dirección de RAM en una línea de caché concreta.
Ya que la RAM tiene mayor capacidad que la caché, ¿cómo se reparte la RAM entre las líneas de caché disponibles? Existen tres tipos de caché según la técnica empleada:
Caché de mapeo directo. Se divide la RAM en porciones de igual tamaño, tantas como líneas de caché existan. Cada línea de caché es un recurso a compartir por las direcciones de memoria de una porción diferente. Por ejemplo, si se dispone de una RAM de 64 MB y la caché de 512 kB presentada anteriormente, cada línea podrá almacenar 32 de las 4.096 direcciones que contiene la porción de RAM asociada (64 MB/ 16.384 líneas = 4.096 bytes / línea). Esta técnica permite una búsqueda muy rápida, ya que cada posición de RAM sólo puede estar en una determinada línea. Sin embargo, la probabilidad de encontrar la información buscada es mínima. Imagine dos instrucciones A y B, que se corresponden con la misma línea de caché (esto es, pertenecen a una misma porción de RAM). Suponga que la CPU necesita ejecutar una secuencia alternada A, B, A, B, etc. En ese caso, se tendrá que acceder a la RAM para copiar A y luego para copiar B (y reemplazar a la instrucción A en la caché), y así hasta terminar la secuencia. Sin duda, el porcentaje de acierto es nulo en dicha situación.
Caché completamente asociativa. Cada línea de caché se puede llenar con cualquier grupo de posiciones de la memoria RAM. En este caso, el porcentaje de acierto es máximo, y el ejemplo anterior no produciría problemas. En cambio, el tiempo de acceso es muy elevado, puesto que una posición de RAM puede estar en cualquier línea de caché (esto es lento, incluso empleando algoritmos de búsqueda avanzados).
Caché asociativa por conjuntos de N líneas. La caché se divide en conjuntos de N líneas. A cada conjunto se le asocia un grupo de posiciones de RAM. Dentro del conjunto asignado, una posición de RAM puede ir a parar a cualquiera de las N líneas que lo forman. En otras palabras, dentro de cada conjunto la caché es totalmente asociativa. Esta situación es la más equilibrada, puesto que se trata de un compromiso entre las técnicas anteriores. Si se hace N=1, se tiene una caché de mapeo directo. Si N es igual al número de líneas de la caché, se tiene una caché completamente asociativa. Si se escoge un valor de N apropiado, se alcanzará la solución óptima.
Normalmente, la caché L2 es de mapeo directo, mientras que la caché L1 es asociativa por conjuntos de N líneas.

Políticas de escritura
El proceso de escritura en caché es muy simple: en lugar de escribir la información en la RAM, se escribe directamente en la caché. El detalle a resolver es: ¿cuándo se traslada la información de la caché a la RAM? Hay dos políticas de escritura fundamentales para resolver dicho problema:
Write-Back. La información se escribe directamente en la caché, sin actualizar la RAM. Cuando una posición de la caché debe ser utilizada por otra posición de RAM diferente, su contenido actual se traslada a la RAM, asegurando la coherencia entre ambas memorias.
Write-Through. Cada vez que se escribe en una línea de caché, se actualiza la RAM. Esta técnica conlleva un acceso continuo a la RAM, por lo que el rendimiento es pobre.
Las caché Write-Back proporcionan el mayor rendimiento, pero conlleva un riesgo de integridad. Por ejemplo, en un momento dado, el contenido de la RAM y la caché L2 pueden ser diferentes. Con la memoria RAM esto no tiene gran importancia. Pero en casos como la caché asociada al disco duro (espacio en RAM), y ante un fallo de la alimentación eléctrica, esto puede implicar mantener en disco una información no actualizada. Por ello, las cachés de disco suelen evitar la técnica Write-Back.

Conclusiones
En este artículo hemos revisado los sistemas de caché, presentes en todo PC como solución óptima para mejorar el rendimiento del sistema. Hemos definido el concepto de sistema de caché, explicando a continuación su funcionamiento. Acto seguido, hemos introducido los diferentes tipos de caché presentes en un PC, estudiando su organización jerárquica (aprovechando para presentar dos elementos muy destacados actualmente en todo procesador: las caché L1 y L2). También hemos comentado la estructura interna de una caché L2, y las técnicas básicas para el mapeo de la RAM sobre la caché. Finalmente, hemos presentado las políticas fundamentales de escritura en caché. Estos conceptos le permitirán conocer mejor su ordenador, y entender por qué el término “caché” es tan nombrado en las descripciones de los procesadores y computadoras.

14 – Funcionamiento de los Registros del procesador

Registros Del Procesador

En arquitectura de computadora, a registro del procesador es una cantidad pequeña de almacenaje disponible en CPU de quién contenido se puede alcanzar más rápidamente que el almacenaje disponible a otra parte. La mayoría, pero no todos, las arquitecturas de computadora modernas funcionan encendido el principio de datos móviles desde memoria central en los registros, funcionándolos encendido, entonces moviendo el resultado nuevamente dentro de la memoria-uno principal supuesta carga-almacene la arquitectura. Una característica común deprogramas de computadora es lugar de la referencia: los mismos valores están alcanzados a menudo en varias ocasiones; y llevar a cabo estos valores con frecuencia usados en registros mejora funcionamiento de la ejecución de programa.
Los registros del procesador están en la tapa del jerarquía de la memoria, y proporcione la manera más rápida para a CPU a los datos del acceso. El término es de uso frecuente referirse solamente al grupo de los registros que se codificandirectamente como parte de una instrucción, según lo definido por sistema de instrucción. Más correctamente, éstos se llaman los “registros arquitectónicos”. Por ejemplo, x86 el sistema de instrucción define un sistema de ocho 32 registros del pedacito, pero a CPU que los instrumentos el sistema de instrucción x86 contendrán a menudo muchos más registros que apenas estos ocho.
El asignación de variables con frecuencia usadas a los registros puede ser crítico al funcionamiento de un programa. Esta acción, a saber asignación del registro es realizado por a recopilador en cifre la generación fase.

Registros

Cuando el procesador ejecuta instrucciones, la información almacena en forma temporal en pequeñas ubicaciones de memoria local de 8, 16, 32 o 64 bits, denominadas registros. Dependiendo del tipo de procesador, el número total de registros puede variar de 10 a varios cientos.
Los registros más importantes son:
  • el registro acumulador (ACC), que almacena los resultados de las operaciones aritméticas y lógicas;
  • el registro de estado (PSWProcessor Estado: Word o Palabra de Estado del Procesador), que contiene los indicadores de estado del sistema (lleva dígitos, desbordamientos, etc.);
  • el registro de instrucción (RI), que contiene la instrucción que está siendo procesada actualmente;
  • el contador ordinal (OC o PC por Program Counter, Contador de Programa), que contiene la dirección de la siguiente instrucción a procesar;
  • el registro del búfer, que almacena información en forma temporal desde la memoria.
  • 15 – Funcionamiento de los Buses de datos, de dirección y de control

    ¿QUE ES UN BUS?

    En informática, un bus es un conjunto cableado que sirve para que los dispositivos hardware puedan comunicarse entre sí. Son rutas compartidas por todos los dispositivos y les permiten transmitir información de unos a otros, son, en definitiva, las autopistas de la información interna, las que permiten las transferencias de toda la información manejada por el sistema.

    En un bus, todos los nodos conectados a él reciben los datos que se vuelcan, pero sólo aquél dispositivo al que va dirigida la información es quien la toma y la procesa, el resto la ignora.

    Los conductores eléctricos de un bus pueden ser tanto en paralelo como en serie. El bus de datos de los discos duros IDE (ATA) es paralelo (varios cables); en cambio, en los discos Serial ATA, el bus es serie (una sola vía de datos).

    Existen varios tipos:
    - Bus de direcciones
    - Bus de control
    - Bus de datos

    16 – Sistemas numéricos

    SISTEMAS NUMÉRICOS
    Digito: Es un signo que representa una cantidad contable. Dependiendo del sistema de numeración, serán los diferentes signos que se tenga para representar cualquier cantidad.
    Numero: Es la representación de una cantidad contable por medio de uno o más dígitos.
    Sistema de Numeración: Es un conjunto de dígitos que sirven para representar una cantidad contable.
    El nombre del sistema de numeración que se trate serán los diferentes dígitos posibles para tal representación.
    Así también los sistemas de numeración se les llama base, de tal manera que el sistema de numeración binario, también se le llama base 2.
    Los sistemas de numeración más utilizados en electrónica son:
    • Binario o Base 2 (0, 1)
    • Octal o Base 8 (0, 1, 2, 3, 4, 5, 6, 7)
    • Hexadecimal o Base 16 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)
    • Decimal o Base 10 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
    Absoluto
    Valores de un digito
    Relativo
    Valor Absoluto de un Digito: Es aquel representa un digito sin importar donde se encuentre así:
    5 2 7 6 10 BASE 10
    5 Cinco 2 Dos 7 Siete 6 Seis
    Valor Relativo de un Digito: Es aquel representa el mismo digito, dependiendo de la posición que se encuentre con respecto a la división de los enteros y las fracciones.
    53 22 71 60 = Cinco mil, doscientos, Setenta y Seis
    5 x 103 + 2 x 102 + 7 x 101 + 6 x 100
    5 x 1000 + 2 x 100 + 7 x 10 + 6 x 1

     Conversión entre sistemas numericos

    Conversiones Entre los Sistemas de Numeración
    Conversión de decimal a cualquier otro sistema de numeración:
    Para convertir de decimal a cualquier otro sistema se hará por división sucesiva, es decir que si queremos convertir a binario un numero de decimal, bastara dividir entre dos la cantidad y el resultado volverlo a dividir hasta que el resultado sea menor a 2, siempre con números enteros, de tal manera si él numero decimal es non o impar sobrara siempre uno y si es par sobrara cero y estos residuos se pondrán en orden de la ultima división a la primera y se da dicho numero binario.
    BINARIO O BASE 2
    Ejemplo de la conversión de decimal a binario:
    7004 10 1101101011100 2 2003 10 11111010011 2
    7004 0 2003 1
    3502 0 1001 1
    1751 1 500 0
    875 1 250 0
    437 1 125 1
    218 0 62 0
    109 1 31 1
    54 0 15 1
    27 1 7 1
    13 1 3 1
    6 0 1 1
    3 1
    1 1
    7699 10 1111000010011 2 2531 10 1001111000112
    7699 1 2531 1
    • 1 1265 1
    1924 0 623 0
    962 0 316 0
    481 1 158 0
    240 0 79 1
    120 0 39 1
    60 0 19 1
    30 0 9 1
    15 1 4 0
    7 1 2 0
    3 1 1 1
    1 1
    Para convertir de cualquier sistema de numeración a decimal se hará por el peso de los dígitos, convirtiéndose estos a decimal y sumando el resultado.
    DECIMAL
    BINARIO
    BASE 4
    OCTAL
    HEXADECIMAL
    0
    0
    0
    0
    0
    1
    1
    1
    1
    1
    2
    10
    2
    2
    2
    3
    11
    3
    3
    3
    4
    100
    10
    4
    4
    5
    101
    11
    5
    5
    6
    110
    12
    6
    6
    7
    111
    13
    7
    7
    8
    1000
    20
    10
    8
    9
    1001
    21
    11
    9
    10
    1010
    22
    12
    A
    11
    1011
    23
    13
    B
    12
    1100
    30
    14
    C
    13
    1101
    31
    15
    D
    14
    1110
    32
    16
    E
    15
    1111
    33
    17
    F
    16
    10000
    40
    20
    10
    20
    1
    21
    2
    22
    4
    23
    8
    24
    16
    25
    32
    26
    64
    27
    128
    28
    256
    29
    512
    210
    1024
    211
    2048
    212
    4096
    213
    8192
    214
    16, 384
    215
    32, 768
    216
    65, 573
    217
    131, 072
    218
    262, 144
    219
    524, 288
    220
    1′ 048, 576
    80
    1
    81
    8
    82
    64
    83
    512
    84
    4, 096
    85
    32, 768
    86
    262, 144
    87
    2′ 097, 152
    160
    1
    161
    16
    162
    256
    163
    4, 096
    164
    65, 536
    165
    1′ 048, 576
    En matemáticas, varios sistemas de notación que se han usado o se usan para representar cantidades abstractas denominadas números. Un sistema numérico está definido por la base que utiliza. La base de un sistema numérico es el número de símbolos diferentes o guarismos, necesarios para representar un número cualquiera de los infinitos posibles en el sistema.
    A lo largo de la historia se han utilizado multitud de sistemas numéricos diferentes, pero existen 4 de sistemas numéricos de los mas utilizados en la actualidad y son:
    • Binario o Base 2 (2 Dígitos, 0 – 1)
    • Octal o Base 8 (8 Dígitos, 0 – 7)
    • Decimal o Base 10 (10 Dígitos, 0 – 9)
    • Hexadecimal o Base 16 (16 Dígitos, 0 – f)
    Valores posiciónales
    La posición de una cifra indica el valor de dicha cifra en función de los valores exponenciales de la base. En el sistema decimal, la cantidad representada por uno de los diez dígitos -0, 1, 2, 3, 4, 5, 6, 7, 8 y 9- depende de la posición del número completo.
    Para convertir un número n dado en base 10 a un número en base b, se divide (en el sistema decimal) por b, el cociente se divide de nuevo por b, y así sucesivamente hasta obtener un cociente cero.
    Sistema Numérico Binario o Base 2
    El sistema de numeración más simple que usa la notación posicional es el sistema de numeración binario. Este sistema, como su nombre lo indica, usa solamente dos dígitos (0,1).
    Números decimales del 0 al 10 y sus equivalentes en binario
    Decimal
                            
    Binario
    0   
    0   
    1   
    1   
    2   
    10   
    3   
    11   
    4   
    100   
    5   
    101   
    6   
    110   
    7   
    111   
    8   
    1000   
    9   
    1001   
    10   
    1010   
    Sistema Numérico Octal o Base 8
    El sistema de numeración octal es también muy usado en la computación por tener una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0,1,2,3,4,5,6,7) y tienen el mismo valor que en el sistema de numeración decimal. Como el sistema de numeración octal usa la notación posicional entonces para el número 3452.32q tenemos:
    2*(80) + 5*(81) + 4*(82) + 3*(83) + 3*(8-1) + 2*(8-2) = 2 + 40 + 4*64 + 64 + 3*512 + 3*0.125 + 2*0.015625 = 2 + 40 + 256 + 1536 + 0.375 + 0.03125 = 1834 + 40625dentonces,3452.32q = 1834.40625d
    Los números octales pueden construirse a partir de números binarios agrupando cada tres dígitos consecutivos de estos últimos (de derecha a izquierda) y obteniendo su valor decimal.
    Por ejemplo, el número binario para 74 (en decimal) es 1001010 (en binario), lo agruparíamos como 1 001 010. De modo que 74 en octal es 112.
    Es posible que la numeración octal se usara en el pasado en lugar de la decimal, por ejemplo, para contar los espacios interdigitales o los dedos distintos de los pulgares. Esto explicaría porqué en latín nueve (novem) se parece tanto a nuevo(novus). Podría tener el significado de número nuevo.
    Sistema Numérico Decimal o Base 10
    El sistema de numeración decimal es el más usado, tiene como base el número 10, o sea que posee 10 dígitos (o símbolos) diferentes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). El sistema de numeración decimal fue desarrollado por los hindúes, posteriormente lo introducen los árabes en Europa, donde recibe el nombre de sistema de numeración decimal o arábigo. Si se aplica la notación posicional al sistema de numeración decimal entonces el dígito número n tiene el valor: (10n)* A
    Este valor es positivo y es mayor o igual que uno si el dígito se localiza a la izquierda del punto decimal y depende del dígito A, en cambio el valor es menor que uno si el dígito se localiza a la derecha del punto decimal. Por ejemplo, el número 3489.125 expresado en la notación posicional es:
    primero 9 * (100) = 9 ——— primero 1*(10-1) = 0.1
    segundo 8 * (101) = 80 ——– segundo 2*(10-2) = 0.02
    tercero 4 * (102) = 400 ——– tercero 5*(10-3) = 0.005
    cuarto 3 * (103) = 3000
    Notación Posicional del Sistema
    (10-6) = 0.000001
    (10-5) = 0.00001
    (10-4) = 0.0001
    (10-3) = 0.001
    (10-2) = 0.01
    (10-1) = 0.1
    (100) = 1
    (101) = 10
    (102) = 100
    (103) = 1000
    (104) = 10000
    (105) = 100000
    (106) = 10000000
    Sistema Numérico Hexadecimal o Base 16
    El sistema de numeración hexadecimal, o sea de base 16, (es común abreviar hexadecimal como hex aunque hex significa base seis y no base dieciséis). El sistema hexadecimal es compacto y nos proporciona un mecanismo sencillo de conversión hacia el formato binario, debido a esto, la mayoría del equipo de cómputo actual utiliza el sistema numérico hexadecimal. Como la base del sistema hexadecimal es 16, cada dígito a la izquierda del punto hexadecimal representa tantas veces un valor sucesivo potencia de 16, por ejemplo, el número 123416 es igual a:
    1*163 + 2*162 + 3*161 + 4*160
    lo que da como resultado:
    4096 + 512 + 48 + 4 = 466010
    Cada dígito hexadecimal puede representar uno de dieciséis valores entre 0 y 1510. Como sólo tenemos diez dígitos decimales, necesitamos inventar seis dígitos adicionales para representar los valores entre 1010 y 1510. En lugar de crear nuevos símbolos para estos dígitos, utilizamos las letras A a la F.
    Para convertir un número hexadecimal en binario, simplemente sustituya los correspondientes cuatro bits para cada dígito hexadecimal, por ejemplo, para convertir 0ABCDh en un valor binario:
    0 A B C D (Hexadecimal)
    0000 1010 1011 1100 1101 (Binario)

    Codificación de caracteres ASCII y UNICODE

     

    ¿Qué es el código ASCII?

    La memoria de un ordenador guarda toda la información en formato digital. No hay forma de almacenar caracteres directamente. Cada uno de los caracteres tiene un código digital equivalente. Esto se denomina código ASCII (American Standard Code for Information Interchange). El código ASCII básico representaba caracteres utilizando 7 bits (para 128 caracteres posibles, enumerados del 0 al 127).
    • Los códigos de 0 al 31 no se utilizan para caracteres. Éstos se denominancaracteres de control ya que se utilizan para acciones como:
      • Retorno de carro (CR)
      • Timbre (BEL)
    • Los códigos 65 al 90 representan las letras mayúsculas.
    • Los códigos 97 al 122 representan las letras minúsculas
      (Si cambiamos el 6º bit, se pasa de mayúscula a minúscula; esto equivale a agregar 32 al código ASCII en base decimal).

    Tabla de caracteres ASCII

    caractère code ASCII code hexadécimal
    NUL (Null) 0 00
    SOH (Start of heading) 1 01
    STX (Start of text) 2 02
    ETX (End of text) 3 03
    EOT (End of transmission) 4 04
    ENQ (Enquiry) 5 05
    ACK (Acknowledge) 6 06
    BEL (Bell) 7 07
    BS (Backspace) 8 08
    TAB (Horizontal tabulation, tabulación horizontal) 9 09
    LF (Line Feed, salto de línea) 10 0A
    VT (Vertical tabulation, tabulación vertical) 11 0B
    FF (Form feed) 12 0C
    CR (Carriage return, retorno de carro) 13 0D
    SO (Shift out) 14 0E
    SI (Shift in) 15 0F
    DLE (Data link escape) 16 10
    DC1 (Device control 1) 17 11
    DC2 (Device control 2) 18 12
    DC3 (Device control 3) 19 13
    DC4 (Device control 4) 20 14
    NAK (Negative acknowledgement) 21 15
    SYN (Synchronous idle) 22 16
    ETB (End of transmission block, fin de bloque de transmisión) 23 17
    CAN (Cancel, cancelar) 24 18
    EM (End of medium, fin de medio) 25 19
    SUB (Substitute, sustituto) 26 1A
    ESC (Escape, carácter de escape) 27 1B
    FS (File separator, separador de archivos) 28 1C
    GS (Group separator, separador de grupo) 29 1D
    RS (Record separator, separador de registros) 30 1E
    US (Unit separator, separador de unidades) 31 1F
    SP (Space, espacio) 32 20
    ! 33 21
    34 22
    # 35 23
    $ 36 24
    % 37 25
    & 38 26
    39 27
    ( 40 28
    ) 41 29
    * 42 2A
    + 43 2B
    , 44 2C
    - 45 2D
    . 46 2E
    / 47 2F
    0 48 30
    1 49 31
    2 50 32
    3 51 33
    4 52 34
    5 53 35
    6 54 36
    7 55 37
    8 56 38
    9 57 39
    : 58 3A
    ; 59 3B
    < 60 3C
    = 61 3D
    > 62 3E
    ? 63 3F
    @ 64 40
    A 65 41
    B 66 42
    C 67 43
    D 68 44
    E 69 45
    F 70 46
    G 71 47
    H 72 48
    I 73 49
    J 74 4A
    K 75 4B
    L 76 4C
    M 77 4D
    N 78 4E
    O 79 4F
    P 80 50
    Q 81 51
    R 82 52
    S 83 53
    T 84 54
    U 85 55
    V 86 56
    W 87 57
    X 88 58
    Y 89 59
    Z 90 5A
    [ 91 5B
    \ 92 5C
    ] 93 5D
    ^ 94 5E
    _ 95 5F
    ` 96 60
    a 97 61
    b 98 62
    c 99 63
    d 100 64
    e 101 65
    f 102 66
    g 103 67
    h 104 68
    i 105 69
    j 106 6A
    k 107 6B
    l 108 6C
    m 109 6D
    n 110 6E
    o 111 6F
    p 112 70
    q 113 71
    r 114 72
    s 115 73
    t 116 74
    u 117 75
    v 118 76
    w 119 77
    x 120 78
    y 121 79
    z 122 7A
    { 123 7B
    | 124 7C
    } 125 7D
    ~ 126 7E
    Tecla de borrar 127 7F

    Tabla de caracteres de ASCII extendido

    El ASCII se desarrolló para utilizarse con el idioma inglés. No posee caracteres acentuados, o caracteres específicos de otros idiomas. Para codificar estos caracteres, se necesitaba un sistema de códigos distinto. El código ASCII se extendió a 8 bits (el equivalente a un byte) a fin de codificar más caracteres (esto se denomina código ASCII extendido).
    Este código asigna los valores del 0 al 255 (codificados en 8 bits, es decir, en 1 byte) para las mayúsculas, las minúsculas, los dígitos, las marcas de puntuación y otros símbolos (incluyendo los caracteres acentuados del código iso-latin1).
    El código ASCII extendido no está estandarizado y varía de acuerdo a la plataforma en que se utiliza.
    Los dos grupos de caracteres más comunes del código ASCII extendido son:
    • Código extendido ASCII OEM, que estaba integrado en el primer PC de IBM.
      Código extendido ASCII OEM
    • Código extendido ASCII ANSI, utilizado por los sistemas operativos actuales.
      Código extendido ASCII ANSI

    Código EBCDIC

    El código EBCDIC (en castellano, código de intercambio decimal binario extendido), desarrollado por IBM, se utiliza para codificar caracteres con 8 bits. A pesar de que IBM lo utiliza en muchos de sus equipos, no ha tenido tanto éxito como ASCII.

    Unicode

    Unicode es un sistema de codificación de caracteres de 16 bits desarrollado en 1991. Unicode puede representar cualquier carácter a través de un código de 16 bits, independientemente del sistema operativo o el idioma de programación utilizado.
    Incluye casi todos los alfabetos actuales (como el árabe, el armenio, el cirílico, el griego, el hebreo y el latín) y es compatible con el código ASCII.

About these ads

About this entry